Изменения белков, жиров, экстрактивных веществ и витаминов
Изменения белков. Тепловая денатурация сопровождается модификацией структуры белковых молекул, приводящей к заметному изменению их свойств без разрушения ковалентных связей. В фибриллярных белках группы миозина, фибриногена наблюдается переход от изогнутой складчатой α-кон-фигурации полипептидных цепей к более растянутой β-конфигурации. При денатурации глобулярных белков происходит перегруппировка водородных связей, глобулы развертываются, приближаясь по структуре к фибрилляр-ным белкам.
При нагреве мяса денатурация белков происходит в температурном интервале, так как белки отличаются по температуре денатурации (табл. 12).
Денатурация сопровождается изменением свойств белков.
Характерным признаком денатурации является потеря белками физиологической (ферментативной) активности.
В результате тепловой денатурации уменьшается гидратация белков и их растворимость.
Нагрев мышечной ткани сопровождается значительным увеличением числа определяемых кислотных групп белков без изменения доли основных групп. В связи с этим происходит смещение рН среды в нейтральную область. Одновременно с этим смещается и изоэлектрическая точка мышечных белков в нейтральную область, но в большей мере. Таким образом, происходит сближение фактической величины рН с изоэлектрической точкой белков, что является основной причиной уменьшения их ВСС.
Таблица 12
Белки мяса | Температура денатурации, оС |
Миозин Актин Миоген Миоальбумин Глобулин Х Миоглобин Коллаген Эластин | 45-55 50-55 55-66 45-47 50-80 60-70 58-65 |
Количество прочно связанной влаги в мышечной ткани уменьшается на 15-20 %. Это приводит к потерям массы сырья при нагреве, повышению жесткости и уменьшению сочности мышечной ткани.
При варке несоленого мяса в зависимости от температуры и времени выделятся около 35-40 % воды. С водой теряются растворимые соединения. Величина потерь определяет выход продукта после нагрева. Отсюда следует, что температура и продолжительность тепловой обработки мясопродуктов должны быть лишь минимально необходимыми и соответствовать особенностям состава и свойств нагреваемого продукта.
Внутренние пептидные связи при развертывании полипептидных цепей при денатурации становятся более доступными действию ферментов. Следовательно, денатурированные белки лучше перевариваются. Но длительный нагрев приводит к снижению перевариваемости вследствие агрегирования белков.
За собственно денатурацией следует агрегирование белковых частиц в крупные образования. Внутримолекулярные связи заменяются межмолекулярными, то есть происходит коагуляция белка. Коагуляция ускоряется с повышением температуры и длительности нагрева.
Заметные денатурационные изменения при нагревании мышц наступают при температуре 45 оС, когда мышцы начинают сокращаться. При дальнейшем нагреве наблюдается дальнейшее укорачивание мышцы, это явление необратимо.
Основные денатурационные изменения завершаются при достижении температуры 70 оС, когда тканевые ферменты утрачивают свою активность, поэтому при умеренном нагреве конечная температура мясных изделий составляет 65-70 оС в центре продукта.
При этой температуре происходит денатурация миоглобина и гемоглобина, сопровождающаяся характерным для сложных белков ослаблением связей между глобином и простетической группой - гемом. В результате гем отщепляется и, вступая в поточные реакции, изменяет окраску. Введение в мясо нитрита позволяет стабилизировать окраску вареного мяса. При нагреве нитрозомиоглобин денатурирует с образованием окрашенного в красный цвет нитрозогемохромогена.
нагрев
NOMв глобин + NO-гемохромоген
Важнейшим результатом тепловой обработки мясного сырья является изменение свойств основного белка соединительной ткани - коллагена (подробно рассмотрено в теме 2). Сваривание и гидротермический распад коллагена повышают усвояемость белка, уменьшают прочность соединительной ткани, поэтому для сырья с высоким содержанием коллагена состояние кулинарной готовности определяется степенью распада коллагена.
В клеежелатиновом производстве, при производстве застудневающих мясопродуктов гидротермический распад коллагена является главным технологическим процессом получения желатина и клеящих веществ.
Изменения жиров. Нагрев тканей, содержащих жир, сопровождается его плавлением. Если нагрев протекает в водной среде, часть жира образует с водой эмульсию. При достаточно длительном нагреве в контакте с водой жир претерпевает химические изменения. Возрастание кислотного числа свидетельствует о гидролитическом распаде жира. Отщепляющиеся при гидролизе низкомолекулярные кислоты участвуют в формировании запаха мяса после варки.
Изменения экстрактивных веществ. Изменения экстрактивных веществ мяса при нагреве играют решающую роль в формировании специфических аромата и вкуса вареного мяса.
Тщательно отмытое от растворимых в воде веществ мясо после варки обладает очень слабым запахом, а водная вытяжка после нагрева имеет вкус и запах вареного мяса.
В формировании запаха и вкуса вареного мяса участвует большое количество веществ различной химической природы. Известно, что важную роль в этом играет глютаминовая кислота и ее соли. Даже в очень малых количествах (около 0,03 %) эти соединения придают продукту вкус мяса. Глютаминовая кислота образуется при нагреве в слабокислой среде (рН равным 6 и ниже) из глютамина (амида глютаминовой кислоты), содержащегося в мышечной ткани.
Существенное значение в образовании вкуса и аромата мяса играют также инозиновая кислота, креатин, креатинин; меркаптаны, образующиеся в ходе превращений серусодержащих аминокислот; летучие карбонильные соединения, летучие жирные кислоты и др.
В образовании специфического аромата и вкуса мяса большая роль принадлежит реакции меланоидинообразования, начальным этапом которой является окислительно-восстановительное взаимодействие аминокислот с редуцирующими сахарами, содержащимися в мясе. Наиболее склонны к такому взаимодействию моносахариды (рибоза, глюкоза), гликокол, лейцин, аланин.
В ходе таких реакций образуются различные карбонильные соединения (преимущественно альдегиды), являющиеся ароматобразующими веществами.
В ходе реакций образуются также окрашенные продукты темно-ко-ричневые меланоидины, придающие продукту коричневую окраску.
Реакция меланоидинообразования в обычных условиях протекает медленно, а при нагревании резко ускоряется. Наиболее наглядно ее последствия проявляются при жарении мяса.
На ход реакции меланоидинообразования влияет степень созревания мяса, продукты жизнедеятельности микрофлоры (например, при посоле). С развитием автолиза мышечной ткани мяса в его составе увеличивается число и количество свободных аминокислот, а также содержание рибозы (за счет распада нуклеотидов) и глюкозы (вследствие амилолиза гликогена).
Развитие полезной микрофлоры при длительном созревании сопровождается накоплением продуктов распада белков.
Изменения витаминов. Тепловая обработка мяса приводит к уменьшению содержания некоторых витаминов в результате их химических изменений, а также потерь во внешнюю среду. В зависимости от способа и условий тепловой обработки мясо теряет 30-60 % тиамина, 15-30 % пантотеновой кислоты и рибофлавина, 10-35 % никотиновой кислоты, 30-60 % пиридоксина, часть аскорбиновой кислоты.