Филогенез. Правила эволюции филогенетических групп

Филогене́з, или филогени́я (др.-греч. φῦλον, phylon — племя, раса и др.-греч.γενετικός, genetikos — имеющий отношение к рождению), — историческое развитие организмов[1]. В биологии филогенез рассматривает развитие биологического вида во времени. Биологическая классификация основана на филогенезе, но методологически может отличаться от филогенетического представления организмов.

Филогенез рассматривает эволюцию в качестве процесса, в котором генетическая линия — организмы от предка к потомкам — разветвляется во времени, и её отдельные ветви могут приобретать те или иные изменения или исчезать в результате вымирания.

Имеющиеся на сегодняшний день знания о ветвлении филогенетического древа получены путём построения классификации живых организмов, которая исходно была задумана Карлом Линнеем как отражение «Естественной Системы» всей природы (в том числе и неживой). Впоследствии было установлено, что такой «Естественной Системы» не существует, а то, что К. Линней принимал за проявление этой системы у животных и растений, является филогенией, то есть результатом биологической эволюции.

Для более эффективного анализа филогении в настоящее время разрабатываются принципы, в которых метод записи классификации усовершенствован по сравнению с линнеевским, что позволяет более адекватно записать филогению в форме классификации и продолжить её анализ[2].

Анализ филогении далёк от завершения, поскольку представляет собой выявление однократных неповторимых эволюционных событий, произошедших в прошлом, и поэтому может осуществляться только косвенными методами. Для реконструкции и филогении необходимо максимально полное знание о разнообразии видов; однако в настоящее время науке всё ещё известна лишь малая часть видов живых организмов, обитающих на Земле, и ничтожно малая часть видов, обитавших на Земле в прошлом.

Правила. Эволюционный процесс осуществляется на основе действия определенных правил, закономерностей. Прежде всего следует отметить, что эволюция представляет собой необратимый процесс. Закон необратимости эволюции был сформулирован Ч. Дарвиным, В соответствии с этим законом, если орган подвергся редукции и исчез, то вновь он не может появиться. Закон необратимости эволюции хорошо подтверждается современными данными. Постоянно осуществляющийся в природе мутационный процесс имеет ненаправленный, случайный характер, он неизбежно изменяет генофонд популяции, повторение которого невозможно даже при полном восстановлении прежних условий. Например, амфибии во взрослом состоянии перешли на легочное дыхание, утратив жаберное дыхание своих предков

Правило необратимости эволюции в настоящее время получило важное уточнение. Успехи генетики позволяют сделать вывод о возможности повторного возникновения признаков на основе обратных мутаций. Но признание обратимости отдельных признаков в филогенезе не означает признания обратимости эволюционного процесса в целом. Статистически вероятно повторное воникновение мутаций, но статистически невероятно повторное возникновение генных комллексов и целых фенотипов (Н.Н. Воронцов, 1984).В общем, полной повторяемости прошлых событий эволюции никогда не происходит. Закон необратимости эволюции отражает это положение. Характерной чертой эволюционного процесса является не повторение старого, а образование нового качества. (Ш. Депере, 1876) Согласно данному правилу, группа, вступившая на путь специализации, в дальнейшем развитии будет идти по пути все более глубокой специализации. Происхождение от неспециализированных предков. - обычно новые крупные группы берут начало не от специализированных представителей предковой группы, а от сравнительно неспециализированных. Так, млекопитающие произошли не от крупных специализированных динозавров, а от группы сравнительно мелких неспециализированных рептилий. Имеются другие правила.Эволюция представляет непрерывный процесс возникновения и развития новых адаптаций – адаптациогенез. Кроме отмеченных, имеется ряд других правил, закономерностей.1.Эволюция органического мира, в целом, имеет прогрессивный характер: она неуклонно ведет к созданию все более высоких форм жизни, к усложнению организации. 2.Эволюция сопровождается не только появлением новых и усовершенствованных форм, но и вымиранием старых. 3.Эволюция организмов всегда сопровождается дифференцировкой частей и органов, 4.Закон корреляции 5.Эволюция в основе является процессом монофилетическим, то есть развитие происходит от одного общего предка. 6.Эволюция носит поступательный характер.7.Эволюция происходит с разной скоростью в разные периоды8.Эволюция организмов различных типов происходит с разной скоростью. 9.Правило адаптивной радиации: эволюционное развитие происходит в разных направлениях, способствуя заселению разных сред обитания.10.Эволюция затрагивает популяциии и происходит в результате процессов мутирования, рекомбинации, изоляции, дрейфа генов, борьбы за существование, других факторов. Основным, движущим и направляющим, фактором эволюции является естественный отбор, как избирательное воспроизведение генотипов.

Ген. Обратная транскрипция.

Обратная транскрипция — это процесс образования двуцепочечной ДНК на основании информации в одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.[1]

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.[2]

Однако в 1970 году Темин[3] и Балтимор[4] независимо друг от друга открыли фермент, названный обратной транскриптазой (ревертазой), и возможность обратной транскрипции была окончательно подтверждена. В 1975 году Темину и Балтимору была присуждена Нобелевская премия в области физиологии и медицины.

Изменчивость

Изменчивость организмов проявляется в разнообразии особей (одного вида, породы или сорта), отличающихся друг от друга по комплексу признаков, свойств и качеств. Причины тому могут быть разными. В одних случаях данные различия (при одинаковых генотипах у организмов) определяются условиями среды, в которых происходит развитие особей. В других — различия обусловлены неодинаковыми генотипами организмов. На основании этого выделяют два типа изменчивости: ненаследственную(модификационную, фенотипическую) и наследственную(генотипическую).

Модификационная (фенотипическая)изменчивость заключается в том, что под действием разных условий внешней среды у организмов одного вида, генотипически одинаковых, наблюдается изменение признаков (фенотипа). Изменения эти индивидуальны и не наследуются, т. е. не передаются особям следующих поколений. Рассмотрим проявление подобной закономерности на нескольких примерах.

В одном из опытов корневище одуванчика разрезали вдоль острой бритвой и высадили половинки в разных условиях — в низине и в горах. К концу сезона из этих проростков выросли совершенно не похожие друг на друга растения. Первое из них (в низине) было высоким, с большими листьями и крупным цветком. Второе, выросшее в горах, в суровых условиях, оказалось низкорослым, с мелкими листьями и цветком (рис. 1).

Генотип у этих двух растений абсолютно идентичен (ведь они выросли из половинок одного корневища), но их фенотипы существенно различались в результате разных условий произрастания. Потомки этих двух растений, выращенные в одинаковых условиях, ничем не отличались друг от друга. Следовательно, фенотипические изменения не наследуются.

Биологическое значение модификационной изменчивости заключается в обеспечении индивидуальной приспособляемости организма к различным условиям внешней среды.

Рассмотрим другой пример. Представим себе, что два брата, однояйцовых близнеца (т. е. с идентичными генотипами) выбрали еще в детстве разные увлечения: один посвятил себя тяжелой атлетике, а другой — игре на скрипке. Очевидно, через десяток лет между ними будет наблюдаться существенное физическое различие. И также ясно, что у спортсмена его новорожденный сын не родится с «атлетическими» признаками.

Изменения фенотипа под воздействием условий внешней среды могут происходить не беспредельно, а только в ограниченном диапазоне (широком или узком), который обусловлен генотипом. Диапазон, в пределах которого признак может изменяться, носит название нормы реакции. Так, например, признаки у коров, учитываемые в животноводстве, — удойность (т. е. количество вырабатываемого молока) и жирность молока — могут изменяться, но в разных пределах. В зависимости от условий содержания и кормления животных удойность варьируется существенно (от стаканов до нескольких ведер в сутки). В данном случае говорят о широкойнорме реакции. А вот жирность молока очень незначительно колеблется в зависимости от условий содержания (всего на сотые доли процента), т. е. этот признак характеризуется узкойнормой реакции.

Итак, условия внешней среды обусловливают изменения признака в пределах нормы реакции. Границы же последней продиктованы генотипом. Следовательно, изменения самой нормы реакции могут произойти только в результате изменения генотипа (т. е. в результате генотипической изменчивости).

Наши рекомендации