Разновидности электрошлаковой сварки

Основными разновидностями электрошлаковой сварки являются

· многоэлектродная электрошлаковая сварка,

· электрошлаковая сварка пластинчатыми электродами,

· электрошлаковая сварка плавящимся мундштуком.

Так как выделение теплоты в шлаковой ванне происходит главным образом в области электрода, максимальная толщина металла, свариваемого одной проволокой, обычно ограничена 60 мм. При больших толщинах целесообразно использовать несколько проволок – обычно кратно трем – числу фаз источника питания. При необходимости проволокам придают колебания поперек зазора для его лучшего заполнения. Сила сварочного тока на одну проволоку составляет Iсв = 200–600А, напряжения сварки – 26–44В; скорость подачи проволоки – Vп = 100–400 м/ч.

Разновидности электрошлаковой сварки - student2.ru

Рисунок. Многоэлектродная электрошлаковая сварка

Электрошлаковый процесс устойчиво протекает при плотностях тока на порядок ниже, чем дуговой, – около 0,1 А/мм2. Поэтому сечение электрода может быть увеличено и проволока заменена пластинчатым электродом, что позволяет повысить производительность процесса сварки.

Разновидности электрошлаковой сварки - student2.ru

Рисунок. Электрошлаковая сварка пластинчатым электродом

При сложной конфигурации изделия возможна сварка плавящимся мундштуком, который представляет собой пластинчатый электрод, повторяющий форму свариваемых кромок.

Разновидности электрошлаковой сварки - student2.ru

Рисунок. Электрошлаковая сварка плавящимся мундштуком

Так как между плавящимся мундштуком и изделием имеется зазор, для его заполнения в сварочную ванну дополнительно через мундштук подается проволока.

Области применения электрошлаковой сварки

Основным преимуществом электрошлаковой сварки является возможность сварки за один проход деталей практически любой толщины. Сварка производится без разделки кромок, поэтому ее экономичность повышается с ростом толщины свариваемого металла. Экономически целесообразно применять ее уже начиная с 40 мм, но чаще всего она используется для сварки толщин 100–500 мм.

Электрошлаковая сварка применяется при изготовлении массивных станин, валов мощных турбин, толстостенных котлов и барабанов. Ее применение вносит коренные изменения в технологию производства крупногабаритных изделий. Появляется возможность замены крупных литых или кованых деталей сварно-литыми или сварно-коваными из более мелких поковок или отливок.

Недостатками электрошлаковой сварки является повышенная зона термического влияния, вызванная медленным нагревом и охлаждением металла. Это часто приводит к образованию неблагоприятных, крупнозернистых структур и требует термообработки для получения необходимых свойств сварного соединения.

Вопрос 47

Флюсы (назначения, классификация, применение).
Сварочные флюсы применяют при автоматической и механизированной дуговой сварке под флюсом, при ручной дуговой сварке чугуна и цветных металлов. Они представляют собой сыпучее зернистое вещество, которое при расплавлении образует жидкий шлак, защищающий металл сварного шва от азота и кислорода воздуха.
Кроме того, назначение флюсов следующее:
• обеспечение устойчивого горения дуги;
• раскисление сварочной ванны и получение плотных швов без пор и шлаковых включений;
• легирование металла шва;
• уменьшение потерь электродного металла на угар и разбрызгивание;
• улучшение формирования шва;
• сохранение теплоты в зоне сварки, вследствие чего химические реакции между жидким металлом и шлаком проходят более полно.
По способу изготовления флюсы делят на:
• плавленые;
• неплавленые.
Плавленые флюсы изготовляют сплавлением флюсовой шихты определенного состава в электрических или пламенных печах с последующей ее грануляцией до получения крупинок (зерен) требуемого размера.
По строению зерен плавленые флюсы разделяют на:
• стекловидные;
• пемзовидные.
Стекловидный флюс представляет собой прозрачные зерна с острыми гранями, окрашенными в зависимости от состава флюса в различные цвета. Для его получения жидкий расплав флюса при 1200-1250°С тонкой струей сливают в бак с холодной проточной водой. Расплав быстро затвердевает и растрескивается на мелкие зерна.
Пемзовидный флюс представляет собой зерна пенистого материала также различных оттенков. При выливании в воду жидкого расплава флюса, нагретого до 1550-1600°С, пары воды вспенивают расплавленную массу, образуя пемзовидный флюс.
Плавленые флюсы (ГОСТ 9087-81), применяемые при автоматической и механизированной дуговой и электрошлаковой сварке и наплавке стали, выпускают 21 марки.
Размер зерен флюса - от 0,25 до 4 мм. Флюсы - стекловидный с размером зерен не более 2,5 мм и пемзовидный с размером зерен не более 4 мм – предназначены для автоматической сварки проволокой диаметром не менее 3 мм. Стекловидный флюс с размером зерен не более 1,6 мм предназначен для автоматической и механизированной сварки проволокой диаметром не более 3 мм.
Флюс упаковывают в бумажные мешки или другую тару, обеспечивающую его сохранность при транспортировании. Масса одного упаковочного места должна быть не более 50 кг.
Плавленые флюсы различных марок имеют разные области применения. Например: АН-17М, АН-43, АН-47 - для дуговой сварки и наплавки углеродистых низколегированных сталей.
Кроме плавленых широко применяют и неплавленые (керамические) флюсы, получаемые скреплением частиц флюсовой шихты без их расплавления. Они представляют собой механическую смесь тонкоизмельченных природных минералов, ферросплавов и силикатов, сцементированных жидким стеклом и гранулированных на крупинки определенных размеров. Каждое зерно (крупинка) керамического флюса состоит из прочно соединенных мелких частичек и содержит все компоненты флюса в определенном соотношении.
Керамические флюсы различных марок имеют определенные области применения, например:
АНК-35 и АНК-36 используют для сварки углеродистых сталей;
АНК-47 и АНК-48 - для сварки низколегированных сталей;
АНК-45 - для сварки высоколегированных сталей;
АНК-18, АНК-19 и АНК-40 - при наплавочных работах;
АНК-3 служит добавкой (в количестве 5-15%), применяемой в смеси с плавлеными флюсами АН-348А, ОСЦ-45, АН-60 и другими для повышения стойкости швов против образования пор. Наиболее распространенным видом флюса является вещество бура.
Керамические флюсы гигроскопичны, поэтому хранить их следует в герметически закрывающейся упаковке. Ввиду небольшой прочности зерен транспортировать керамический флюс рекомендуется в жесткой таре - металлических банках или картонных барабанах.

Вопрос 2. Способы газовой сварки (назначение, техника выполнения).
В практике различают два способа ручной газовой сварки: правый и левый.
Левым способом газовой сварки (рис. 40, а) называется такой способ, при котором сварку ведут справа налево, сварочное пламя направляют на еще несваренные кромки металла, а присадочную проволоку перемещают впереди пламени.
Левый способ наиболее распространен и применяется при сварке тонких и легкоплавких металлов. При левом способе сварки кромки основного металла предварительно подогревают, что обеспечивает хорошее перемешивание сварочной ванны. При этом способе сварщик хорошо видит свариваемый шов, поэтому внешний вид шва получается лучше, чем при правом способе.
Правый способ сварки (рис. 40, 6) - это такой способ, когда сварку выполняют слева направо, сварочное пламя направляют на сваренный участок шва, а присадочную проволоку перемещают вслед за горелкой.
Мундштуком горелки при правом способе выполняют незначительные поперечные колебания.
Так как при правом способе пламя направлено на сваренный шов, то обеспечивается лучшая защита сварочной ванны от кислорода и азота воздуха и замедленное охлаждение металла шва в процессе кристаллизации. Качество шва при правом способе выше, чем при левом. Теплота пламени рассеивается меньше, чем при левом способе.
Поэтому при правом способе сварки угол разделки шва делается не 90°, а 60-70°, что уменьшает количество наплавляемого металла и коробление изделия.
Правый способ экономичнее левого, производительность сварки при правом способе на 20-25% выше, а расход газов на 15-20% меньше, чем при левом.
Правый способ целесообразно применять при сварке деталей толщиной более 5 мм и при сварке метал лов с большой теплопроводностью. При сварке металла толщиной до 3 мм более производителен левый способ.

Разновидности электрошлаковой сварки - student2.ru
Рис. 40. Способы сварки: а - левый; б - правый


Мощность сварочной горелки для стали при правом способе выбирается из расчета ацетилена 120-150 дм3/ч, а при левом - 100-130 дм3/ч на 1 мм толщины свариваемого металла.
Диаметр присадочной проволоки выбирается в зависимости от толщины свариваемого металла и способа сварки.
При левом способе сварки диаметр присадочной проволоки d=S/2+1 мм, а при правом d=S/2 мм, где S - толщина свариваемого металла, мм.

3. Задача. Нужно, используя газовую сварку, соединить трубы диаметром 45 мм, толщиной стенки 3 мм. Назовите диаметр проволоки, количество слоев сварки.
Трубы сваривают в один слой поворотным способом, левым способом, так как он применяется при сварке металла толщиной до 5 мм, диаметр проволоки 2,5 мм.

Вопрос 48

Неплавящиеся электроды

Неплавящийся электрод или совсем не плавится в процессе дуговой сварки, или, если и плавится, то незначительно, и его материал не принимает существенного участия в образовании наплавленного металла и сварного шва.

Сварка ненлавящимся угольным электродом является старейшим способом дуговой сварки, первым изобретением Н. Н. Бенардоса. Известно несколько видов неплавящихся электродов, пригодных для использования в дуговой сварке. Угольные электроды представляют собой стержни из электротехнического угля, изготовляемого прессованием порошкообразной смеси из кокса и сажи, замешанных на каменноугольной смоле. После прессования стержни длительно обжигают в специальных печах без доступа воздуха. Они матово-черного цвета, твердые.

Длительным обжигом при очень высоких температурах уголь может быть превращен в кристаллическую разновидность — графит. Электроды из графита значительно лучше угольных, у графита выше электро- и теплопроводность, и он окисляется на воздухе медленнее, чем уголь, поэтому во всех случаях графитные электроды, производимые нашей промышленностью, следует предпочитать угольным. Графит темно-серого цвета с металлическим отблеском, мягок, оставляет следы на бумаге, как мягкий карандаш.

Уголь или графит — это единственный настоящий неплавящийся электрод. Уголь может быть расплавлен только при очень высоком давлении; под атмосферным давлением при нагревании До температуры 4800° С уголь не плавится, и испаряясь, переходит из твердого состояния непосредственно в газообразное. Проводились многократные опыты создания неплавящихся электродов из тугоплавких соединений, например карбидов; пока такие опыты не дали существенных результатов. Широко применяются электроды из вольфрама, самого тугоплавкого металла; темпе-Ратура его плавления 3370 °С, кипения — около 6000 °С.

Неплавящийся электрод может быть создан из такого легкоплавкого металла, как медь (температура плавления 1080 °С). В данном случае используется высокая теплопроводность меди. Медный стержень диаметром 15—20 мм с концом, заточенным на конус, может служить неплавящимся катодом дуги на токах до 15—20 а. Незначительное местное оплавление электрода далее не распространяется; охлаждаемый проточной водой он стоек на токах до 50—60 а. Совершенно исключительную стойкость в дуге, горящей на воздухе, имеет водоохлаждаемый медный электрод, снабженный на рабочем конце вставкой из металла циркония; здесь возможны токи до 300—600 а, дающие совершенно незначительный износ электрода. Цирконий не является особенно тугоплавким металлом (температура плавления 1930 °С, кипения 2900 °С); возможно, что его исключительная стойкость в качестве водоохлаждаемого катода дуги объясняется образованием поверхностной пленки окислов и нитридов циркония, защищающей электрод от воздействия воздуха и достаточно электропроводной для прохождения тока дуги.

Неплавящийся электрод применяется для сварки в основном металлов малых толщин, менее 1 мм, на воздухе без особой защиты и в различных защитных газах, а также для резки металлов, пайки, термообработки. Неплавящийся электрод широко используется в плазмотронах и горелках для получения плазмы для сварки и других целей.

Разновидности электрошлаковой сварки - student2.ru

Рис. 1. Сварка угольной дугой

Неплавящиеся электродные стержни изготовляются дз чистого вольфрама, из вольфрама с присадками окислов тория, лантана или иттрия, электротехнического угля и прессованного графита.

Вольфрам — тугоплавкий металл (температура плавления 3410 °С), имеет достаточно высокую электропроводность и теплопроводность. При сварке вольфрамовым электродом на постоянном токе применяется прямая полярность.

Для электродов применяют стержни следующих марок: ЭВЧ — электродный вольфрам чистый; ЭВЛ-10 и ЭВД-20 — электродный вольфрам с присадкой 1—2% окиси лантана; ЭВТ-15 —- электродный вольфрам с окисыо тория; ЭВИ-30 — электродный вольфрам с 1,5—2% окиси иттрия. Присадки к вольфраму понижают потенциал ионизации и способствуют устойчивому гор нию дуги, а также позволяют увеличивать плотность тока на электроде. Для избежания окисления вольфрамового электрода сварка производится в инертном газе. Диаметр вольфрамовых электродов составляет 2—10 мм в зависимости от силы сварочного тока.

Вопрос 49

В зависимости от длины сварные швы разделяют на:

· короткие до 300 мм;

· средние от 300 до 1000 мм;

· длинные более 1000 мм

Разновидности электрошлаковой сварки - student2.ru

Рис. 67. Классификация сварных швов по длине (24)

Короткиешвы выполняют сваркой на проход (а), от начало до конца.

Швы средней длинысваривают либо от середины к краям, либо так называемыми обратно-ступенчатым способом ( б, в).

Швы большой длины (г) сваривают обратно-ступенчатым способом, от середины к краям.

Обратно ступенчатый способ заключается в том, что весь шов разбивают на участки. Длина участка выбирается в пределах 100 – 300мм в зависимости от толщины метла и жесткости свариваемой конструкции.

Наши рекомендации