Биологические мембраны клеток, их строение, химический состав и функции.

ЦИТОЛОГИЯ

1. Клетка, как структурно-функциональная единица ткани. Общий план строения эукариотических клеток.

Основой строения эукариотических организмов является наименьшая единица живого – клетка. Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом. Содержимое клетки отделено от внешней среды или от соседних клеток плазматической мембраной (плазмолеммой). Все эукариотические клетки состоят из двух основных компонентов: ядра и цитоплазмы. В ядре – хроматин (хромосомы), ядрышки, ядерная оболочка и нуклеоплазма (кариоплазма). Цитоплазма неоднородна по своему составу и строению включает в себя гиалоплазму (основную плазму), в которой находятся органеллы, каждая из них выполняет обязательную клеточную функцию. Часть органелл имеет мембранное строение: ЭПС, комплекс Гольджи, лизосомы, пероксисомы и митохондрии. Немембранные органеллы: центриоли, рибосомы, микротрубочки и микрофиламенты. Так же встречаются включения: жировые капли, пигментные гранулы и др.

Биологические мембраны клеток, их строение, химический состав и функции.

В липидном бислое фосфолипидные гидрофобные группы обращены во внутрь, а гидрофильные наружу. Белковые молекулы (интегральные белки) вмонтированы в плазмалемму. Если белковая молекула пронзает всю толщу мембраны – это трансмембранный белок. Если белковая молекула прикрепляется к поверхности мембраны – это периферические белки (внутренние – белки цитоскелета, наружные – рецепторные белки). Трансмембранные белки образуют ионные каналы. Мембранные белки: прикрепляют филаменты цитоскелета к клеточной мембране; прикрепляют клетки к экстрацеллюлярному матриксу (адгезионные молекулы); транспортируют молекулы в клетку или из неё (белки-переносчики, белки мембранных насосов, белки ионных каналов); действуют как рецепторы химического взаимодействия между клетками; обладают специфической ферментативной активностью. В клеточной мембране также присутствуют гликолипиды, холестерин (ограничивает латеральную текучесть фосфолипидов, делает мембрану менее текучей и более стабильной). Гликолипиды вовлечены в межклеточные взаимодействия. На поверхности выступают и молекулы углеводов, соединённые либо с гликолипидами, либо с белками. Между хвостами противолежащих молекул фосфолипидов есть лишь слабые гидрофобные связи, удерживающие две половины мембраны вместе. При замораживании-скалывании клеточная мембрана расщепляется вдоль так, что большая часть интегральных белков отходит к внутреннему листку, и лишь некоторые из них - наружному.

Функции: установление структурной целостности клетки; селективная проницаемость; регуляция межклеточных взаимодействий; узнавание, через рецепторы, антигенов, повреждённых клеток, чужих клеток; трансдукция внешнего химического и физического сигнала во внутриклеточное событие; служит разделом сред между цитоплазмой и внешним окружением; образует транспортные системы для особых молекул, как, например, глюкоза.

Гликокаликс – тонкая филаментозная сеть на поверхности клеток, отходящая от наружного листка плазмалеммы, состоящая из олигосахаридов, ковалентно связанных с гликолипидами и гликопротеинами плазмалеммы. Играет важную роль в определении иммунологических свойств клетки и её взаимодействии с другими клетками.

Кортикальный слой образован жёсткой сетью поперечно связанных белковых нитей из актина и актин-связанных белков, из которых самый распространённый – филамин. Образует слой, выстилающий Р-поверхность плазмалеммы.

ЭМБРИОЛОГИЯ

Образование, строение и функции зародышевых оболочек и провизорных органов у человека.

Внезародышевые органы, развивающиеся в процессе эмбриогенеза вне тела зародыша, выполняют многообразные функции, обеспечивающие рост и развитие самого зародыша. Некоторые из этих органов, окружающих зародыш, называют также зародышевыми оболочками. К этим органам относятся амнион, желточный мешок, аллантоис, хорион, плацента.

Амнион — временный орган, обеспечивающий водную среду для развития зародыша. В эмбриогенезе человека он появляется на второй стадии гаструляции сначала как небольшой пузырек, дном которого является первичная эктодерма (эпибласт) зародыша Амниотическая оболочка образует стенку резервуара, заполненного амниотической жидкостью, в которой

находится плод. Основная функция амниотической оболочки — выработка околоплодных вод, обеспечивающих среду для развивающегося организма и предохраняющих его от механического повреждения. Эпителий амниона, обращенный в его полость, не только выделяет околоплодные воды, но и принимает участие в обратном всасывании их. В амниотической жидкости поддерживаются до конца беременности необходимый состав и концентрация солей. Амнион выполняет также защитную функцию, предупреждая попадание в плод вредоносных агентов.

Желточный мешок —орган, депонирующий питательные вещества (желток), необходимые для развития зародыша. У человека он образован внезародышевой энтодермой и внезародышевой мезодермой (мезенхимой). Желточный мешок является первым органом, в стенке которого развиваются кровяные островки, формирующие первые клетки крови и первые кровеносные сосуды, обеспечивающие у плода перенос кислорода и питательных веществ.

Аллантоис небольшой отросток в отделе зародыша, врастающий в амниотическую ножку. Он является производным желточного мешка и состоит из внезародышевой энтодермы и висцерального листка мезодермы. У человека аллантоис не достигает значительного развития, но его роль в обеспечении питания и дыхания зародыша все же велика, так как по нему к хориону растут сосуды, располагающиеся в пупочном канатике. Пупочный канатик, или пуповина, представляет собой упругий тяж, соединяющий зародыш (плод) с плацентой.

Хорион, или ворсинчатая оболочка, развивается из трофобласта и внезародышевой мезодермы. Трофобласт представлен слоем клеток, образующих первичные ворсинки. Они выделяют протеолитические ферменты, с помощью которых разрушается слизистая оболочка матки и осуществляется имплантация. Дальнейшее развития хориона связано с двумя процессами — разрушением слизистой оболочки матки вследствие протеолитической активности наружного слоя и развитием плаценты.

Плацента (детское место) человека относится к типу дискоидальных гемохориальных ворсинчатых плацент. Плацента обеспечивает связь плода с материнским организмом, создает барьер между кровью матери и плода. Функции: дыхательная; транспорт питательных веществ, воды, электролитов; выделительная; эндокринная; участие в сокращении миометрия.

Этапы эмбриогенеза.

Эмбриогенез включает в себя процессы с момента оплодотворения до рождения и включает следующие его дни.

1. Оплодотворение, в результате которого образуется зигота (одноклеточный зародыш),

2. Дробление зародыша с образованием бластулы.

3. Гаструляция — образование 3-х листкового зародыша.

4. Гистогенез, органогенез и ситемагенез — дифференцировка зародышевых листков в ткани органов, образование из органов систем органов.

Оплодотворение — это сближение и слияние половых клеток с образованием одноклеточного зародыша — зиготы. У человека оплодотворение внутреннее, т.е. происходит и женских половых путях. В процессе оплодотворения выделяют:

1. Дистантное взаимодействие и сближение половых клеток.

2. Контактное взаимодействие половых клеток и активизация яйцеклетки.

3. Вхождение сперматазоида в в яйцеклетку и последующей синкарион (сингамия)- слияние женского и мужского пронуклеусов.

Зародышевые листки. Образование, дифференцировка. Эктодерма и ее производные.

Мезодерма образуется из клеточного материала первичной полоски и узелка; в ходе гаструляции и инвагинации клеток эпибласта; к концу 3-й недели различаются 3 вида: дорсальная, промежуточная, вентральная.

Дифференцировка мезодермы:

  • 17-й день – мезодерма образует плоский слой между эктодермой и энтодермой.
  • 19-й день – уплощается часть мезодермального листка, ближайшая к хорде – дорсальная (параксиальная) мезодерма. Между ней и латеральной пластинкой находится промежуточная мезодерма.
  • 20-й день – полости, появившиеся в латеральной пластинке, сливаются и между двумя её листками появляется зародышевый целом (внутризародышевая целомическая полость).
  • 21-й день – зародышевый целом сообщается с внезародышевым.

Производные эктодермы: эктодерма даёт начало нервной системе и наружному покрову тела. Она образует эпителиальный компонент кожи, её производных, включая железы. Плакоды – уплощения поверхностной эктодермы головы, а ротовая бухта – инвагинация эктодермы, покрывающей ротовую полость. Необычна судьба эктодермы в образовании соединительной ткани и мышц головы и шеи из нервного гребня. Эктодерма, как и все остальные листки, происходит из эпибласта.

Дифференцировка энтодермы приводит к образованию в теле зародыша энтодермы кишечной трубки и формированию внезародышевой энтодермы, формирующей выстилку желточного пузырька и аллантоиса. Выделение кишечной трубки начинается с момента появления туловищной складки. Последняя, углубляясь, отделяет кишечную энтодерму будущей кишки от внезародышевой энтодермы желточного пузырька. В задней части зародыша в состав образующейся кишки входит и тот участок энтодермы, из которого возникает энтодермальный вырост аллантоиса. Из энтодермы кишечной трубки развивается однослойный покровный эпителий желудка, кишечника и их желез. Кроме того, из энтодермы развиваются эпителиальные структуры печени и поджелудочной железы. Внезародышевая энтодерма дает начало эпителию желточного мешка и аллантоиса.

6. Дифференцировка зародышевых листков, образование осевого комплекса зачатков органов у человека на 2-3 неделе развития. Мезенхима.

Зародышевые листки являются эмбриональными источниками развития тканей, из совокупности и взаимодействия которых развиваются органы. Каждый зародышевый листок дифференцируется в определённых направлениях. При дифференцировке мезодермы дорсальный её отдел сначала подразделяется на сомиты, начиная с головного конца. В каждом сомите из наружной части дифференцируется дерматом – источник соединительнотканной части кожи, из внутренней (медиальной) склеротом – источник хрящевой и костной ткани, из центральной миотом – источник скелетной мышечной ткани. Из сегментных ножек (нефротом) закладывается эпителий почек и гонад. Вентральная мезодерма – спланхотом – расщеплена на два листка, которые входят в состав наружных оболочек многих внутренних органов. В процессе развития зародыша очень рано образуется мезенхима, представляющая собой скопления отросчатых клеток. Она появляется на ранних стадиях, тотчас после сформирования зародышевых листков, заполняя промежутки между ними. Мезенхима представляет собой эмбриональный зачаток многих тканей и органов.

Ткань как один из уровней организации живого. Определение. Классификация. Вклад советских и зарубежных ученых в учение о тканях. Восстановительная способность и пределы изменчивости тканей. Значение гистологии для медицины.

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.

Все ткани делятся на 4 морфофункциональные группы:

I. эпителиальные ткани (куда относятся и железы);

II. ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани (волокнистые, соединительные ткани; соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая), скелетные соединительные ткани).

III. мышечные ткани (поперечно-полосатая, гладкая мышечная ткань).

IV. нервная ткань (нейроциты, глиоциты, нервные волокна).

Московская школа гистологов была создана одним из крупных представителей материалистического направления в естествознании 19века – А.И. Бабухиным. Большое внимание уделялось вопросам гистогенеза различных тканей.

А.А. Заварзин считал основной задачей гистологии – выяснение общих закономерностей филогенетической дифференцировки разновидностей специализированных клеток в пределах каждой ткани при сохранении ограниченного числа морфофункциональных типов тканей.

Н. Г. Хлопин сделала обобщение в области изучения эволюционного развития тканей. Знание нормальной структуры клеток, тканей и органов является необходимым условием для понимания механизмов изменений в низ в патологических условиях. Поэтому гистология тесно связана с патологической анатомией и многими клиническими дисциплинами.

Таким образом, гистология занимает важное место в системе медицинского образования, закладывая основы научного структурно – функционального подхода в анализе жизнедеятельности организма человека в норме и при патологии.

Под восстановительной способностью следует понимать регенерацию.

Физиологическая регенерация – восстановление организмом утраченных или поврежденных органов или тканей.

КРОВЬ И ЛИМФА

Гемопоэз.

Гемопоэзом называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови. Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

А. Лимфоциты

Составляют 25–35% в лейкоцитарной формуле. По размеру подразделяются на:

1) малые лимфоциты (4–6 мкм),

2) средние (7–8 мкм),

3) большие (до 14 мкм).

В периферической крови большие лимфоциты в норме не встречаются, они локализуются в отдельных органах (легких, печени, почках) и исполняют роль естественных киллеров дотимусовой природы (от англ. natural killer – естественный убийца), которые обеспечивают за иммунитет в период до появления вилочковой железы в тех органах, где вероятность встречи с антигеном наиболее высока.

Лимфоциты имеют крупные округлые ядра. Цитоплазма в малых лимфоцитах видна в виде ободка вокруг ядра, а в крупных цитоплазма относительно больше. Иногда лимфоциты видны как фиолетовые шарики из-за того, что базофильная цитоплазма как бы сливается с ядром. В цитоплазме выявляются органеллы, лизосомальный аппарат, неспецифическая зернистость.

По функциональным особенностям все лимфоциты делят на три группы:

1) Т-лимфоциты,

2) В-лимфоциты,

3) 0-лимфоциты [нуль-лимфоциты].

Т-лимфоциты.

Тимус-зависимые лимфоциты, образуются в вилочковой железе. Самые распространенные лейкоциты (среди лимфоцитов 60–70%). По размеру относятся к средним лимфоцитам. Они подразделяются на классы:

1) Т-киллеры – эти лимфоциты имеют на своей мембране рецепторы клеточных антигенов, т.е. они распознают атипичные клетки («чужие» и выродившиеся «свои», в том числе раковые и клетки трансплантата). Выделяют цитотоксические вещества, разрушающие цитолемму этой клетки. В образовавшиеся дефекты мембраны устремляется вода, которая буквально разрывает клетку. Т-киллеры ответственны за клеточный иммунитет и за отторжение трансплантата.

2) Т-хэлперы способны только распознать антиген своими рецепторами, а затем «передать» его В-лимфоцитам. Т.о., Т-хэлперы участвуют в гуморальном иммунитете. Также Т-хэлперы стимулируют превращение В-лимфоцитов в плазматические клетки в ответ на антигенный раздражитель, стимулирует выработку ими антител.

3) Т-супрессоры подавляют предыдущие две популяции (клетки иммунитета), что бывает необходимо, например, во время беременности [в этот момент Т-супрессоры вырабатываются плацентой].

4) Т-амплификаторы выполняют функцию своеобразных диспетчеров, следящих за взаимоотношениями среди всех разновидностей Т-лимфоцитов.

5) Т-лимфоциты памяти образуются в результате иммунного ответа, они несут информацию об уже встречавшихся антигенах, обеспечивая быструю иммунную реакцию при повторном воздействии этого антигена. Эти клетки долгоживущие, могут существовать десятки лет. Существованию именно этих клеток обязаны методы искусственной иммунизации – вакцинация и применение сывороток.

В-лимфоциты.

Название произошло от лат. bursa fabricia – фабрициева сумка, впервые были обнаружены в выпячивании клоаки птиц (фабрициевой сумке) – гомологе червеобразного отростка человека

Ответственны за гуморальный иммунный ответ. Они вырабатывают в процессе иммунного ответа антитела (специфические – иммуноглобулины, неспецифический – гамма-глобулин). Различают:

1) активированные В-лимфоциты, которые в процессе иммунного ответа превращаются в плазматические клетки, которые вырабатывают только антитела;

2) слабоактивированные В-лимфоциты, которые способны вырабатывать антитела, но остаются в кровеносном русле.

3) В-лимфоциты памяти – рециркулирующие лимфоциты: с кровью заносятся в ткани, затем переходят в лимфу, снова в кровь, такая циркуляция происходит в течение всей жизни клетки. При повторной встрече с антигеном они превращаются в лимфобласты («омолаживаются»), которые пролиферируют, что приводит к быстрому образованию эффекторных лимфоцитов, действие которых направлено на конкретный антиген.

4) В-супрессоры.

Лимфоциты образуются в красном костном мозге, проходят в сосуды, попадают в тимус (полустволовые клетки), где они дифференцируются и на их поверхности образуется определенный блок рецепторов, которыми можно распознавать некоторые антигены. В процессе дифференцировки они вырабатывают иммуноглобулин M, G, A, E, D.

0-лимфоциты.

Составляют 5–10% числа лимфоцитов. К этой группе относят еще малодифференцированные, уже деструктурированные лимфоциты, либо лимфоциты с неизвестной функцией, а также стволовые клетки крови, натуральные киллеры. Среди всех лимфоцитов большие составляют примерно 5–6%.

Б. Моноциты.

Это лейкоциты размером 16–18 мкм, в мазке крови до 22 мкм. В лейкоцитарной формуле составляют 6–8%. Имеют костномозговое происхождение, проходя по сосудам, они завершают свою дифференцировку и превращаются в макрофаги (1-1,5 месяца). Покидая сосуды, образуют единую макрофагальную систему, которая состоит из отдельных популяций макрофагов в области предполагаемых ворот инфекции. Это макрофаги:

• дыхательных путей

• респираторного отдела

• плевры (плевральные макрофаги)

• брюшины (перитонеальные макрофаги)

• печени (купферовские клетки)

• соединительной ткани (гистиоциты)

• лимфоузлов

• селезенки

• костного мозга [условия стерильны, поэтому нет функции фагоцитоза]

• костной ткани (остеокласты)

• нервной ткани (микроглия)

СОЕДИНИТЕЛЬНЫЕ ТКАНИ

Классификация соединительной ткани, ее гистофизиологическая характеристика. Клеточные элементы и межклеточное вещество. Морфофункциональная характеристика. Источники развития. Возрастные изменения. Регенерация.

Эту группу составляют: собственно соединительные ткани, соединительные ткани со специальными свойствами и скелетные соединительные ткани (хрящевая и костная).

Клеточные элементы:

· Макрофаги – активно фагоцитирующие клетки, богатые органеллами для внутриклеточного переваривания поглощённого материала и синтеза антибактериальных и других БАВ. Поглощённые чужеродные белки макрофаги концентрируют и переводят из корпускулярной формы в молекулярную.

· Плазмоциты – эти клетки обеспечивают гуморальный иммунитет. Они синтезируют антитела-белки, вырабатывающиеся при появлении в организме антигена и обезвреживающие его.

· Тканевые базофилы – клетки, в цитоплазме которых находится специфическая зернистость. Лаброциты являются регуляторами местного гомеостаза, принимают участие в понижении свёртывания крови, повышения проницаемости гематотканевого барьера, в процессе воспаления и др.

· Липоциты – клетки, обладающие способностью накапливать в больших количествах резервный жир, принимающий участие в трофике, энергообразовании и метаболизме воды.

· Пигментоциты – клетки, содержащие в своей цитоплазме пигмент меланин.

· Адвентициальные клетки – это малодифференцированные клетки, сопровождающие кровеносные сосуды.

Межклеточное вещество состоит из коллагеновых, эластических, ретикулярных волокон, а также из основного вещества. Все эти образования являются продуктом синтетической деятельности и секреции клеток. В течении жизни межклеточное вещество постоянно обновляется – резорбируется и регенерирует. Коллагеновые волокна определяют прочность на разрыв. Эластические – эластичность, растяжимость. Основное вещество – это студнеобразная среда, заполняющая пространство между клетками и волокнами соединительной ткани, участвует в транспорте метаболитов между клетками и кровью, в механической, опорной, защитной функциях. У зародышей человека образование межклеточного вещества происходит начиная с 1-2-го месяца внутриутробного развития.

МЫШЕЧНЫЕ ТКАНИ

Мышечные ткани. Общая морфофункциональная классификация. Гладкая мышечная ткань: источники развития, строение и функциональное значение. Иннервация, структурные основы сокращения гладких мышечных клеток.

Подразделяется на гладкую–развивается из мезенхимы и исчерченные ткани–развивается из мезодермы. В них находится сократительный аппарат, который состоит из миофибрилл–в них находятся актиновые и миозиновые сократительные нити. Поперечно-полосатая включает скелетную и сердечную ткани. Мышечные ткани обеспечивают движение органов и организма.

Гладкая мышечная ткань образует стенки полых органов, сосудов и в виде отдельных пучков располагается внутри органов (строма). В эмбриогенезе образуется из мезенхимы и эпидермиса (миоэпителиальные клетки). Структорно-функциональной единицей гладкой ткани является гладкий миоцит. Чаще всего он имеет веретеновидную или звездчатую форму. Размеры в ширину 6-10 мкм, в длину 25-50 мкм, в беременной матке длина до 500 мкм. В средней части располагается ядро овальной формы, вокруг ядра располагается небольшое кол-во органелл, основной объем клетки занят миофибриллами, которые располагаются продольно, а также под углом друг к другу, “сшивая” таким образом противоположные концы клетки. Миофибриллы состоят из длинных тонких актиновых и коротких миозиновых нитей. Один конец актиновых нитей присоединяется к цитолемме или к плотному белковому тельцу, располагающемуся в цитоплазме, а свободные концы – навстречу и параллельно друг другу. Между свободными концами располагаются толстые короткие миозиновые нити. И при сокращении миофибрилл свободные концы актиновых нитей перемещаются друг к другу. Это вызывает укорочение миофибрилл и в целом сокращение клетки. Мышечные клетки располагаются в шахматном порядке, образуя мышечный пласт. Снаружи каждая клетка ограничена базальной мембраной, которая вырабатывается клеткой. Местами базальная мембрана отсутствует и в этом участке цитолеммы соседних клеток соединяются, образуя щелевидные пространства, через которые передается нервный импульс. Между клетками располагаются межклеточные пространства, в которых находятся тонкие прослойки соединительной ткани с кровеносными и лимфатическими капиллярами и нервными волокнами. Эти прослойки называются эндомизием. Более крупные прослойки, отделяющие пучки мышечных клеток называются перимизием. Соединительная ткань, ограничивающая всю мышцу, называется эпимизием. Гладкая ткань характеризуется тоническим сокращением–это медленно нарастающее сокращение и постепенное расслабление. Гладкая ткань регенерирует за счет внутриклеточной регенерации и за счет пролиферации и дифференцировки стволовых клеток. В стенки матки и мочевого пузыря гладкая ткань образована звездчатыми клетками, они более специализированы. Имеют длинные отростки, способные растягиваться, восстановление характерно за счет внутриклеточной регенерации.

НЕРВНАЯ ТКАНЬ

ЧАСТНАЯ ГИСТОЛОГИЯ

НЕРВНАЯ СИСТЕМА

Головной мозг. Источники развития. Общая морфофункциональная характеристика больших полушарий. Нейронная организация больших полушарий. Цито- и миелоархитектоника коры больших полушарий головного мозга. Возрастные изменения коры.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.

Строение. Кора большого мозга представлена слоем серого вещества. Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга.. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные

границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями. Развитие коры больших полушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в формирующуюся корковую пластинку. Вначале в корковую пластинку поступают нейроциты будущих I и VI слоев, т.е. наиболее поверхностного и глубокого слоев коры. Затем в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших участках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохрон-но). В каждом из этих участков образуются группы нейронов, последовательно выстраивающихся вдоль одного или нескольких волокон

радиальной глии в виде колонки.

Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны. Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоев: I — молекулярный, II — наружный зернистый, III — nuрамидных нейронов, IV — внутренний зернистый, V — ганглионарный, VI — слой полиморфных клеток. Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их нейриты проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Наружный зернистый слой образован мелкими нейронами, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молекулярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя. Самый широкий слой коры большого мозга — пирамидный. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Нейрит пирамидной клетки всегда отходит от ее основания. Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон. Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды.

Слой полиморфных клеток образован нейронами различной формы.

Миелоархитектоника коры. Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие отдельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов центральной

нервной системы.

Возрастные изменения. На 1-м году жизни наблюдаются типизация формы пирамидных и звездчатых нейронов, их увеличение, развитие дендритных и аксонных арборизаций, внутриансамблевых связей по вертикали. К 3 годам в ансамблях выявляются «гнездные» группировки нейронов, более четко сформированные вертикальные дендритные пучки и пучки радиарных волокон. К 5—6 годам нарастает полиморфизм нейронов; усложняется система внутриансамблевых связей по горизонтали за счет роста в длину и разветвлений боковых и базальных дендритов пирамидных нейронов и развития боковых терминалей их апикальных дендритов. К 9—10 годам увеличиваются клеточные группировки, значительно усложняется структура короткоаксонных нейронов, и расширяется сеть аксонных коллатералей всех форм интернейронов. К 12—14 годам в ансамблях четко обозначаются специализированные формы пирамидных нейронов, все типы интернейронов достигают высокого уровня дифференцировки. К 18 годам ансамблевая организация коры по основным параметрам своей архитектоники достигает уровня таковой у взрослых.

ОРГАНЫ ЧУВСТВ

Сердечно-сосудистая система. Общая морфофункциональная характеристика. Классификация сосудов. Развитие, строение, взаимосвязь гемодинамических условий и строения сосудов. Отличия в строении артерии и вен.

Включает сердце, кровеносные и лимфатические сосуды. Закладывается на 3 неделе эмбриогенеза.

Кровеносные сосуды закладываются из мезенхимы (перикард – из спланхнотомов); делятся на артериальные и венозные. По размеру они делятся на крупные, средние и мелкие. В стенке всех сосудов выделяют внутреннюю, среднюю и наружную оболочки.

Артериальные сосуды в зависимости от строения стенки делятся на артерии эластического типа, мышечно-эластического (или смешанного типа) и мышечного типа.

К сосудам эластического типа относятся аорта и легочная артерия. Аорта имеет тонкую внутреннюю оболочку, выстланную изнутри эндотелием, который создает условия для тока крови. Затем идет подэндотелиальный слой, образованный рыхлой соединительной тканью. После подэндотелиального слоя идет сплетение тонких эластических волокон. Сосудов внутренняя оболочка не содержит, питается диффузно. Средняя оболочка мощная, широкая, содержит толстые эластические окончатые мембраны, состоящие из переплетенных между собой эластических волокон. В их окнах под углом располагаются отдельные гладкомышечные клетки. Строение стенки сосуда определяется гемодинамическими факторами: скоростью кровотока и уровнем кровяного давления. Стенка аорты обладает выраженными эластическими свойствами, она способна сильно растягиваться и возвращаться в исходное состояние. Наружная оболочка состоит из рыхлой соединительной ткани, внутренний слой ее содержит более плотную соединительную ткань. В наружной и средней оболочках имеются собственные кровеносные сосуды.

К сосудам мышечного типа относятся сонная и подключичная артерии. В их внутренней оболочке сплетение эластических волокон замещается внутренней эластической мембраной. Средняя оболочка содержит меньшее количество эластических окончатых мембран и увеличенное до половины объема количество гладкомышечной ткани. Сохраняются эластические свойства стенки и усиливается ее сохранительная способность. Сосуды мышечного типа составляют основную массу сосудов мелкого и среднего калибров. Внутренняя оболочка содержит эндотелий, внутренний просвет артерии неровный. Затем идет подэндотелиальный слой и внутренняя эластическая мембрана. Средняя оболочка содержит дугообразные внутренние эластические волокна, при этом их вершина находится в средней части оболочки, а концы этих волокон соединяются с внутренней эластической мембраной или с наружной эластической мембраной, за счет чего образуется эластический каркас стенки артерий. Между петлями этих волокон циркулярно и по спирали идут пучки гладкомышечных клеток. Эта ткань преобладает по объему, поэтому у стенок этих сосудов сильно возрастает сократительная способность. Наружная оболочка содержит наружную эластическую мембрану, которая более тонкая. Кнаружи от нее идет рыхлая соединительная ткань. При сокращении сосуда мышечного типа происходит сужение просвета сосуда, укорочение участка артерии и частичный поворот этого участка.

Сосуды микроциркуляторного отдела кровеносного русла. Морфофункциональная характеристика. Классификация. Особенности структурной организации. Органоспецифичность сосудов микроциркуляторного русла. Понятие о гистогематическом барьере.

Микроциркуляторное русло - система мелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного русла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, но могут быть и другие варианты с выделением какого-либо основного, предпочтительного канала. В каждом органе существуют специфические особенности конфигурации, диаметра и плотности расположения сосудов микроциркуляторного русла. Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы, изменять проницаемость для тканевой жидкости.

Артериолы.

Это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах сохраняются три оболочки, характерные для артерий вообще, однако выражены они очень слабо. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого субэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована 1- 2 слоями гладких мышечных клеток, имеющих спиралевидное направление. В прекапиллярных артериолах (прекапиллярах) гладкие мышечные клетки располагаются поодиночке. Расстояние между ними увеличивается в дистальных отделах, однако они обязательно присутствуют в месте отхождения прекапилля-ров от артериолы и в месте разделения прекапилляра на капилляры. В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Такие контакты создают условия для передачи информации от эндотелия гладким мышечным клеткам. В частности, при выбросе в кровь адреналина надпочечников эндотелий синтезирует фактор, который вызывает сокращение гладких мышечных клеток. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Нару

Наши рекомендации