Инверторные источники питания.
Сварочные аппараты - это промышленные аппараты, используемые для электрической дуговой сварки плавлением. Классифицируются сварочные аппараты следующим образом - аппараты для ручной сварки, для автоматической, и механизированной. Среди них различают: сварочные трансформаторные аппараты, инверторы, сварочные генераторы, сварочные агрегаты и выпрямители. У них есть несколько общих недостатков: повышенная энергоемкость, увеличенные масса и габариты, недостаточное быстродействие, узкий диапазон регулирования режима сварки. А кроме того, низкая частота преобразования (50 Гц).
При этом каждый из этих источников имеет и свои специфические недостатки. Например, трансформатор потребляет значительную реактивную мощность, нагрузка питающей сети в нем несимметрична, поскольку все сварочные трансформаторы однофазные.
Преобразователи и сварочные агрегаты тоже нельзя считать совершенными источниками. Вращающиеся части генератора создают шум, требуют сложного технического обслуживания.
С развитием полупроводниковой техники в 50-х годах появились сварочные выпрямители, которые имели улучшенные технические характеристики. Но и они по-прежнему оставались тяжелыми, громоздкими, инерционными и имели малый КПД.
Однако, после освоения дуговой механизированной сварки проволокой сплошного сечения в защитных газах (MIG/MAG), появились автоматические и автоматизированные установки, для изготовления сварных металлоконструкций стали применять роботизированные комплексы. Для них потребовалось создать новое поколение источников питания сварочной дуги, которые должны были обеспечивать высокое быстродействие, гораздо меньше потреблять энергии, иметь широкий диапазон регулирования режимов сварки, а также универсальные внешние статические характеристики.
Тогда-то и вошли в обиход инверторные источники питания, (Рис.1) которые с середины 80-х годов начали активно вытеснять традиционные.
|
Рис. 1 Блок-схема инверторного источника питания для дуговой сварки.
Принципиальное отличие инверторных источников питания от источников выполненных по традиционной схеме, заключается в том, что в инверторах сетевое напряжение выпрямляется и с помощью электронных ключей (IGBT модулей или MOSFET транзисторов) преобразуется в переменное напряжение с частотой выше 20 кГц, которое питает сварочный трансформатор с дальнейшим выпрямлением сварочного тока.
При этом за счет высокой частоты переменного напряжения, питающего сварочный трансформатор, его размеры и масса существенно (в 5- 10 раз) снижаются. Существенно снижается реактивная составляющая потребляемой мощности и соответственно повышается коэффициент мощности до значений 0,8-0,9, против значений 0,5-0,7 для традиционных источников. При этом кпд инверторного источника достигает значения 85%, что обеспечивает существенную экономию энергопотребления – снижение полной потребляемой мощности и фазных токов, снижение капитальных вложений в реконструкцию электросетей, инвестиций на строительство новых силовых подстанций. Экономия только активной потребляемой мощности в процессе сварки за счет повышения кпд составляет 15-30% по сравнению с традиционными источниками. Из-за существенно более низких токов в первичной сети снижается расходы на токоподводящий кабель, электрораспределительную аппаратуру. Нет необходимости в расходах на приобретение установок компенсации реактивной мощности КРМ.
Важную роль в появлении новых источников сыграло то, что как раз в это время началось серийное производство высокочастотных тиристоров. На их основе и были созданы электронные преобразователи электроэнергии с повышенной (до 50 кГц) - частотой коммутации.
Сердцевиной такого преобразователя является инвертор - электронный блок, преобразующий постоянный ток в переменный повышенной частоты.
Поясним принцип действия инвертора. Переменный ток промышленной частоты 50 Гц поступает на высокочастотный выпрямитель НВ, а затем на низкочастотный фильтр НФ. Полученный постоянный ток принудительно инвертируется (преобразуется) коммутированным инвертором ИН в переменный, но уже частоты 20-50 кГц, после чего трансформатором Тр достигаются величины, необходимые для сварки.
Высокочастотный выпрямитель ВВ выпрямляет переменный ток. Пройдя через выскочастотный фильтр ВФ, ток поступает на дугу.
Внешняя статическая характеристика (Рис.2) формируется путем заведения обратных связей (ОС) по току и напряжению через блок обратных связей БОС. Характеристика делится на несколько характерных участков:
Участок 1 обеспечивает высокое напряжение холостого хода, что способствует стабильному зажиганию дуги.
Участок 2 позволяет вести полуавтоматическую или механизированную сварку.
Участок 3 (падающий) реализует процесс сварки покрытым электродом или неплавящимся электродом в аргоне.
|
Рис. 2 Внешняя статическая
характеристика инверторного
источника питания для дуговой сварки
При сооружении металлоемких сварных конструкций эффективной всегда считалась многопостовая сварка.(Рис.3) На нулевом уровне устанавливали мощный источник питания на 1000 - 5000 А с "жесткой" статической характеристикой. Как правило, в качестве многопостового источника использовали сварочный преобразователь или выпрямитель. Развязку между постами, формирование падающей характеристики источника (она необходима для ручной дуговой сварки и регулирования режима на каждом из постов) обеспечивали балластные реостаты. На них терялось до 50% мощности, потребляемой для сварки. Кроме того, потери электроэнергии происходили в длинных сварочных кабелях из-за скруток, неправильно подобранных сечений и т.д.
|
Рис. 3 Система питания многопостовой дуговой сварки
Такая организация работ была неоправданно энергоемкой. Тем более, что электроэнергия дорожала и продолжает дорожать из года в год.
Иное сулил инверторный источник питания. Его можно приблизить непосредственно к рабочему месту сварщика. Организационное новшество сокращало длину сварочных кабелей и исключало из схемы балластные реостаты, хотя и увеличивало длину питающего сетевого провода.
Ясно, что транспортировка электроэнергии по сети с высоким напряжением предпочтительнее. В отношении такой схемы организации работ возникало только одно, но очень серьезное сомнение: как быть с электробезопасностью? Выход, однако, нашелся. Будучи укомплектованной УЗО (устройствами защитного отключения), распределительная система энергоснабжения становится абсолютно безопасной даже при повреждениях сетевого провода.
Сейчас наша промышленность оснащается инверторными источниками питания уже четвертого и пятого поколений. Преобразователями частоты служат уже не тиристоры и не транзисторы, а модули IGBT, отличающиеся высокой надежностью, и быстродействием, позволяющие достичь частоты преобразования 50 кГц.
О явном преимуществе инверторных источников питания говорит ежегодно растущая доля их выпуска в общем объеме приборов этого назначения. Так, в 2000 году в Европе среди всех выпущенных источников питания 70% пришлось на инверторные. Похожая картина наблюдается и у нас в стране.
Инверторные источники открывают новые перспективы организации сварочного производства, обещают мощный скачок его эффективности и качества.(Рис.4)
|
Рис. 4 Доля инверторных источников питания в общем объеме всех промышленных источников питания