Раскисление, легирование, рафинирование и модифицирование металла при сварке.

Раскисление металла при сварке.

Раскисление – процесс удаления из жидкого Ме кислорода, как растворённого в основе сплава, так и диспергированного в виде химических соединений с другими элементами. Удалить кислород из Ме можно воздействием раскислителей или шлака. Раскислители в результате взаимодействия с окислами Ме могут образовывать продукты реакции, либо газообразные, либо конденсированные (жидкие и твёрдые).

Раскисление с получением газообразных продуктов реакции.

Существуют две типичные реакции этого вида раскисления Ме.

Раскисление углеродом.

Раскисление углеродом происходит в 2 этапа:

1. Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

2. Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Наблюдается одновременное присутствие железа, его закиси, углерода, окиси углерода, двуокиси углерода. Где и при каких условиях будут протекать эти реакции? В условиях равновесия Fe, FeO, C, CO, CO2. Диапазон температур DТ = 400…1200°С.

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru Область I – область устойчивого существования восстановленного Fe. Эта область уменьшается с ростом температуры. Ей отвечает наличие преимущественно восстановительной среды в виде CO.

Область II – устойчивое существование FeO. Она появляется при температуре » 600°С и увеличивается с ростом температуры. В отличие от первой области ей отвечает наличие окислительной среды, заметное количество CO2. В результате начинает развиваться процесс окисления железа по реакции

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Или процесс окисления железа с образованием окиси

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Если имеется магнетит (Fe3O4), восстановление происходит по реакции

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Область III – область устойчивого существования магнетита. При температуре свыше 600°С эта область уменьшается. Ей характерна более сильная окислительная среда, из-за наличия значительного количества CO2. Поэтому в этой области окислительный процесс продолжается

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Реальный сварочный процесс протекает при ещё более высоких температурах и можно предположить следующее: При окислении Ме устойчивой формой оксида железа будет FeO. Раскисление Ме углеродом идёт только по реакции образования окиси углерода. Т.к. при высокой температуре этот продукт очень устойчив Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Отсюда определяют равновесную концентрацию закиси Fe в Ме считая, что содержание Fe в стали » 1 и выразив концентрацию окисла углерода через парциальное давление получим

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Если полагать, что в процессе сварки в области высоких температур парциальное давление углерода » 1, то

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Рассмотрим зависимость содержания растворённой в Ме закиси железа от содержания в нём углерода.

С увеличением содержания углерода в Ме в нём интенсивно уменьшается количество закиси железа. С ростом температуры процесс раскисления углерода убыстряется и раскисление идёт значительно полнее, чем при более низких температурах. Однако, несмотря на очень хорошую раскислительную способность углерод, как раскислитель, находит ограниченное применение. Это объясняется двумя обстоятельствами:

1. Возможность образования пор в Ме шва, особенно на участках, кристаллизующихся в последнюю очередь, сильно насыщенных углеродом. При сварке будут идти реакции выгорания углерода.

2. Возможность повышения содержания углерода в Ме шва, а это не всегда допустимо.

Раскисление водородом.

В общем виде идёт реакция: Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru

Недостатки водорода, как раскислителя:

1. Высокая растворимость в Ме.

2. Опасность образования пор и холодных трещин.

Вывод: Говоря об эффективности раскисления на основе обменных реакций следует иметь в виду, что даже когда процесс протекает длительно не достигается равновесия реакции. Поэтому при сварке отклонение от равновесия будет в сторону более высокого содержания закиси железа. В связи с этим на практике часто применяется несколько раскислителей.

Диффузионное раскисление.

Оно основано на частичном переходе закиси железа из жидкого Ме в шлак, т.к. её распределение между шлаком и Ме подчиняется закону распределения Нернста.

Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru константа равновесия.

Для развития этого вида раскисления важно, чтобы концентрация свободной закиси Ме уменьшалась, тогда новые порции закиси Ме будут переходить из Ме в шлак. Уменьшение содержания свободной закиси железа в шлаке достигается следующими путями:

1. Раскисление, легирование, рафинирование и модифицирование металла при сварке. - student2.ru Связыванием её в комплексное соединение – кислотный оксид (с образованием силикатов или титанитов).

2. Дополнительное применение раскисления на основе обменных реакций.

3. Разбавление шлаков нейтральными, в химическом смысле, добавками.

Константа распределения, определяющая степень перехода закиси железа из Ме в шлак, с увеличением температуры уменьшается.

При высоких температурах меньшее количество закиси Ме может перейти в шлак, нежели при низких.

При диффузионном раскислении закись железа удаляется из Ме в шлак путём диффузии, следовательно все химические процессы протекают на границе Ме – шлак, или в самом шлаке.

Недостатки: Само раскисление протекает медленно, поэтому, хотя при температурах близких к температуре плавления Ме L высока, скорость диффузии замедляется и общий процесс оказывается не очень высоким.

Процесс диффузионного раскисления наиболее заметен при образовании капли на торце электрода и при переносе её через дугу. Этому способствует очень высокая температура. Ме в капле энергично перемешивается и непрерывно контактирует со свежими порциями шлака. В сварочной ванне процесс диффузионного раскисления протекает лишь в верхнем тонком слое Ме, прилегающем к шлаку. В результате диффузионное раскисление не играет значительной роли при дуговой сварке и наиболее заметно при ЭШС.

Наши рекомендации