Резонансная теория Гельмгольца основывалась на предположении, что отдельные волокна основной мембраны настроены, как струны, на различные звуковые частоты.

Восприятие звуков различной высоты, обусловлено тем, что каждое во­локно основной мембраны настроено на звук определенной час­тоты.

Как известно, концевым аппаратом слухового нерва является орган Корти, покоящийся на основной перепонке, идущей вдоль всего спирального костного канала, называемого улиткой. Основная перепонка состоит из большого количества (около 24 000) поперечных волокон, длина которых постепенно уменьшается от вершины улитки к ее основанию. По резонансной теории Гельмгольца, каждое такое волокно настроено, подобно струне, на определенную частоту колебаний. Когда до улитки доходят звуковые колебания определенной частоты, то резонирует определенная группа волокон основной перепонки и возбуждаются только те клетки органа Корти, которые покоятся па этих волокнах. Звуки низкой частоты воспринимаются длинными вол­нами основной мембраны, расположенными ближе к верхушке улитки, звуки высокой частоты воспринимаются короткими во­локнами основной мембраны, расположенными ближе к основа­нию улитки. При действии сложного звука возникают колебания различных волокон мембраны.

В современной интерпретации резонансный механизм лежит в основе теории места, в соответствии с которой в состояние коле­бания вступает вся мембрана. Однако максимальное отклонение основной мембраны улитки происходит только в определенном месте. При увеличении частоты звуковых колебаний максималь­ное отклонение основной мембраны смещается к основанию улит­ки, где располагаются более короткие волокна основной мембра­ны, — у коротких волокон возможна более высокая частота коле­баний. Возбуждение волосковых клеток именно этого участка мем­браны при посредстве медиатора передается на волокна слухового нерва в виде определенного числа импульсов, частота следования которых ниже частоты звуковых волн (лабильность нервных воло­кон не превышает 800 — 1000 Гц). Частота воспринимаемых звуковых волн достигает 20 000 Гц. Таким способом осуществляется простран­ственный тип кодирования высоты и частоты звуковых сигналов.

Отдельные нейроны на разных уровнях слуховой сенсорной системы настроены на определенную частоту звука, т.е. каждый нейрон имеет свой специфический частотный порог, свою опре­деленную частоту звука, на которую реакция нейрона максималь­на. Таким образом, каждый нейрон из всей совокупности звуков воспринимает лишь определенные достаточно узкие участки час­тотного диапазона, не совпадающие между собой, а совокупно­сти нейронов воспринимают весь частотный диапазон слышимых звуков, что и обеспечивает полноценное слуховое восприятие.




Вестибулярный анализатор, его строение и функциональное значение. Роль вестибулярной системы в регуляции и контроле моторных реакций.

Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Это одна из древнейших сенсорных систем, развившаяся в условиях действия силы тяжести на земле. Импульсы вестибулярного аппарата используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека.

Общий план организации

Вестибулярная сенсорная система состоит из следующих отделов:

  • периферический отдел включает два образования, содержащие механорецепторы вестибулярной системы — преддверие (мешочек и маточка) и полукружные каналы;
  • проводниковый отдел начинается от рецепторов волокнами биполярной клетки (первого нейрона) вестибулярного узла, расположенного в височной кости, другие отростки этих нейронов образуют вестибулярный нерв и вместе со слуховым нервом в составе 8-ой пары черепно-мозговых нервов входят в продолговатый мозг; в вестибулярных ядрах продолговатого мозга находятся вторые нейроны, импульсы от которых поступают к третьим нейронам в таламусе (промежуточный мозг);
  • корковый отдел представляют четвертые нейроны, часть которых представлена в проекционном (первичном) поле вестибулярной системы в височной области коры, а другая часть — находится в непосредственной близости к пирамидным нейронам моторной области коры и в постцентральной извилине. Точная локализация коркового отдела вестибулярной сенсорной системы у человека в настоящее время не установлена.

Наши рекомендации