Корреляция качественных признаков

Корреляция качественных признаков – метод анализа связи переменных, измеряемых в порядковых шкалах и шкалах наименований (см. шкалы измерительные). Наиболее часто такой корреляционный анализ проводят с помощью коэффициентов ранговой корреляции, используемых в случаях, когда обе переменные измеряются в шкалах порядка или легко могут быть преобразованы в ранги. При измерении сравниваемых переменных в шкалах наименований широко применяются коэффициенты сопряженности, в которых в качестве промежуточной расчетной величины используется критерий согласия Пирсона(см. критерий X2). Наиболее часто в таких расчетах пользуются коэффициентом сопряженности Пирсона:

Корреляция качественных признаков - student2.ru

Значение P всегда положительно и измеряется от нуля до единицы. Особенностью коэффициента сопряженности Пирсона является то, что максимальное его значение всегда меньше +1 и в значительной степени зависит от количества наблюдений (размера таблицы). В случае квадратной таблицы (k × k):

Корреляция качественных признаков - student2.ru

Так, в таблице размером (5 × 5) Pmax = 0,894; в таблице (10 × 10) Рmax = 0,949. Поэтому окончательной формой выражения связи между переменными с помощью коэффициента Пирсона является его отношение к величине Рmax для данного случая (Р / Рmax).

При расчете сопряженности находит применение также коэффициент Чупрова:

Корреляция качественных признаков - student2.ru

где t – число столбцов таблицы;

k – число строк таблицы.

В психологической диагностике описанные коэффициенты используются относительно редко.

Ранговая корреляция

Ранговая корреляция – метод корреляционного анализа, отражающий отношения переменных, упорядоченных по возрастанию их значения. Наиболее часто ранговая корреляция применяется для анализа связи между признаками, измеряемыми в порядковых шкалах (см. шкалы измерительные), а также как один из методов определения корреляции качественных признаков. Достоинством коэффициентов ранговой корреляции является возможность их использования независимо от характера распределения коррелирующих признаков.

В практике наиболее часто применяются такие ранговые меры связи, как коэффициенты ранговой корреляции Спирмена и Кендалла. Первым этапом расчета коэффициентов ранговой корреляции является ранжирование рядов переменных (табл. 2). Процедура ранжирования начинается с расположения переменных по возрастанию их значений. Разным значениям присваиваются ранги, обозначаемые натуральными числами. Если встречается несколько равных по значению переменных, им присваивается усредненный ранг.

Таблица 2

Ранжирование распределения показателей теста (n = 18)

Корреляция качественных признаков - student2.ru

В таблице 2 приведены данные для расчета коэффициентов ранговой корреляции. Во второй графе представлены ранжированные показатели по первому из сравниваемых распределений (оценка IQ, в третьей графе – соответствующие им данные теста зрительной памяти).

Коэффициент корреляции рангов Спирмена (rs)определяется из уравнения:

Корреляция качественных признаков - student2.ru

где di – разности между рангами каждой переменной из пар значений X и Y;

n – число сопоставляемых пар.

Используя данные таблицы 2, получаем:

Корреляция качественных признаков - student2.ru

Коэффициент корреляции рангов Кендаллаτ определяется следующей формулой:

Корреляция качественных признаков - student2.ru

где Р и Q рассчитываются по таблице 12.

Так, в восьмой графе подсчитывается, начиная с первого объекта X, сколько раз его ранг по Y меньше, чем ранг объектов, расположенных ниже. Соответственно, в девятой графе (S2) фиксируется, сколько раз ранг Y больше, чем ранги, стоящие ниже его в столбце X. Подставляя эти данные в формулу, получаем:

Корреляция качественных признаков - student2.ru

При сопоставлении приведенных коэффициентов оказывается, что коэффициент τ более информативен, чем rs, и рассчитывается проще. Поэтому на практике при расчете рановой корреляции отдают предпочтение коэффициенту τ (табл. 3).

Таблица 3

Наши рекомендации