Краткая история развития метрологии

Аккредитации поверочных и испытательных лабораторий

Госстандарт является национальным органом по аккредитации лабораторий. В 1993г. им введена в действие единая Система аккредитации поверочных и испытательных лабораторий Республики Беларусь.

Работы по аккредитации лабораторий осуществляют более 120 высококвалифицированных и аккредитованных экспертов системы Госстандарта, министерств и ведомств.

За время действия Системы аккредитации поверочных и испытательных лабораторий в Республике аккредитовано:

  • 10 органов по аккредитации поверочных и испытательных лабораторий;
  • более 70 поверочных лабораторий;
  • более260 независимых испытательных центров и лабораторий

Организационно-правовые основы законодательной метрологии

Законодательная метрология - раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений

Работы по обеспечению единства измерений в Республике Беларусь осуществляются на основе Закона "Об обеспечении единства измерений"

…………

Средства измерений

Средство измерения - это техническое устройство, используемое при измерениях и имеющее нормированные метрологические свойства.

Виды средств измерений

Технические устройства, предназначенные для обнаружения (инди-кации) физических свойств, называются индикаторами (стрелка компаса, лакмусовая бумага). С помощью индикаторов устанавливается только на-личие измеряемой физической величины интересующего нас свойства материи.

По метрологическому назначению средства измерений делятся на образцовые и рабочие.

Образцовые предназначены для поверки по ним других средств измерений как рабочих, так и образцовых менее высокой точности.

Рабочие средства измерений предназначены для измерения размеров величин, необходимых в разнообразной деятельности человека.

Сущность разделения средств измерений на образцовые и рабочие состоит не в конструкции и не в точности, а в их назначении.

К средствам измерения относятся:

1. Меры, предназначеные для воспроизведения физической величины заданного размера. Различают однозначные и многозначные меры, а также наборы мер (гири, кварцевые генераторы и т. п.). Меры, воспроизводящие физические величины одного размера, называются однозначными. Многозначные меры могут воспроизводить ряд размеров физической величины, часто даже непрерывно заполняющих некоторый промежуток между определенными границами. Наиболее распространенными многозначными мерами являются миллиметровая линейка, вариометр и конденсатор переменной емкости.

В наборах и магазинах отдельные меры могут объединяться в различных сочетаниях для воспроизведения некоторых промежуточных или суммарных, но обязательно дискретных размеров величин. В магазинах объединены в одно механическое целое, снабженное специальными переключателями, которые связаны с отсчетными устройствами. В противоположность этому набор состоит обычно из нескольких мер, которые могут выполнять свои функции как в отдельности, так и в различных сочетаниях друг с другом (набор концевых мер длины, набор гирь, набор мер добротности и индуктивности и т. д.).

Сравнение с мерой выполняют с помощью специальных технических средств - компараторов (равноплечие весы, измерительный мост и т. п.).

К однозначным мерам относятся также образцы и образцовые вещества. Стандартные образцы состава и свойств веществ и материаловпредставляют собой специально оформленные тела или пробы вещества определенного и строго регламентированного содержания, одно из свойств которых при определенных условиях является величиной с известным значением. К ним относятся образцы твердости, шероховатости, белой поверхности, а также стандартные образцы, используемые при поверке приборов для определения механических свойств материалов. Образцовые вещества играют большую роль в создании реперных точек при осуществлении шкал. Например, чистый цинк служит для воспроизведения температуры 419,58 °С, золото - 1064,43 °С.

В зависимости от погрешности аттестации меры подразделяются на разряды (меры 1, 2-го и т. д. разрядов), а погрешность мер является основой их деления на классы. Меры, которым присвоен тот или иной разряд, применяются для поверки измерительных средств и называются образцовыми.

2. Измерительные преобразователи - это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения и обработки, но, как правило, не доступную для непосредственного восприятия наблюдателем (термопары, измерительные усилители и др.).

Преобразуемая величина называется входной, а результат преобразования - выходной величиной. Соотношение между ними задается функцией преобразования (статической характеристикой). Если в результате преобразования физическая природа величины не изменяется, а функция преобразования является линейной, то преобразователь называется масштабным, или усилителем, (усилители напряжения, измерительные микроскопы, электронные усилители). Слово “усилитель” обычно употребляется с определением, которое приписывается ему в зависимости от рода преобразуемой величины (усилитель напряжения, гидравлический усилитель) или от вида единичных преобразований, происходящих в нем (ламповый усилитель, струйный усилитель). В тех случаях, когда в преобразователе входная величина превращается в другую по физической природе величину, он получает название по видам этих величин (электромеханический, пневмоемкостный и так далее).

По месту, занимаемому в приборе, преобразователи подразделяются на (рис. 3.1): первичные, к которым подводится непосредственно измеряемая физическая величина; передающие, на выходе которых образуются величины, удобные для их регистрации и передачи на расстояние; промежуточные, занимающие в измерительной цепи место после первичных.

           
  Краткая история развития метрологии - student2.ru  
 

Краткая история развития метрологии - student2.ru Краткая история развития метрологии - student2.ru Краткая история развития метрологии - student2.ru Краткая история развития метрологии - student2.ru Краткая история развития метрологии - student2.ru к отсчетному

Устройству

Рис.3.1. Преобразование измерительной информации:

1 - чувствительный элемент; 2 - первичный преобразо-ватель; 3 - промежуточные преобразователи; 4 – передающий преобразователь

3. Измерительные приборы относятся к средствам измерений, предназначенным для получения измерительной информации о величине, подлежащей измерению, в форме, удобной для восприятия наблюдателем.

Наибольшее распространение получили приборы прямого действия, при использовании которых измеряемая величина подвергается ряду последовательных преобразований в одном направлении, т. е. без возвращения к исходной величине. К приборам прямого действия относится большинство манометров, термометров, амперметров, вольтметров и т. д.

Значительно большими точностными возможностями обладают приборы сравнения, предназначенные для сравнения измеряемых величин с величинами, значения которых известны. Сравнение осуществляется с помощью компенсационных или мостовых цепей. Компенсационные цепи применяются для сравнения активных величин, т. е. несущих в себе некоторый запас энергии (сил, давлений и моментов сил, электрических напряжений и токов, яркости источников излучения и т. д.). Сравнение проводится путем встречного включения этих величин в единый контур и наблюдения их разностного эффекта. По этому принципу работают такие приборы, как равноплечие и неравноплечие весы (сравнение на рычаге силовых эффектов действия масс), грузопоршневые и грузопружинные манометрические в вакуумметрические приборы (сравнение на поршне силовых эффектов измеряемого давления и мер массы) и др.

Для сравнения пассивных величин (электрические, гидравлические, пневматические и другие сопротивления) применяются мостовые цепи типа электрических уравновешенных или неуравновешенных мостов. Конечно, пассивные величины могут быть вначале преобразованы в активные или наоборот и сравниваться соответственно в компенсационных или мостовых цепях.

По способу отсчета значений измеряемых величин приборы подразделяются на показывающие, в том числе аналоговые и цифровые, и на регистрирующие.

Наибольшее распространение получили аналоговые приборы, отсчетные устройства которых состоят из двух элементов - шкалы и указателя, причем один из них связан с подвижной системой прибора, а другой - с корпусом. В цифровых приборах отсчет осуществляется с помощью механических, электронных или других цифровых отсчетных устройств. Цифровые приборы прямого действия применяются наиболее часто в тех случаях, когда измеряемая величина предварительно легко преобразуется в угол поворота некоторого вала (лопастные счетчики) или в последовательность импульсов (регистрация радиоактивных излучений).

По способу записи измеряемой величины регистрирующие приборы делятся на самопишущие и печатающие. В самопишущих приборах (например, барограф или шлейфовый осциллограф) запись показаний представляет собой график или диаграмму. В печатающих приборах информация о значении измеряемой величины выдается в числовой форме на бумажной ленте.

Автоматические приборы сравнения выпускаются чаще всего в виде комбинированных приборов, в которых шкальный или цифровой отсчет сочетается с записью на диаграмме или с печатанием результатов измерений.

4. Вспомогательные средства измерений.К этой группе относятся средства измерений величин, влияющих на метрологические свойства другого средства измерений при его применении или поверке. Показания вспомогательных средств измерений используются для вычисления поправок к результатам измерений (например, термометров для измерения температуры окружающей среды при работе с грузопоршневыми манометрами) или для контроля за поддержанием значений влияющих величин в заданных пределах (например, психрометров для измерения влажности при точных интерференционных измерениях длин).

5. Измерительные установки. Для измерения какой-либо величины или одновременно нескольких величин иногда бывает недостаточно одного измерительного прибора. В этих случаях создают целые комплексы расположенных в одном месте и функционально объединенных друг с другом средств измерений (мер, преобразователей, измерительных приборов и вспомогательных средств), предназначенных для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем.

6. Измерительные системы - это средства и устройства, территори-ально разобщённые и соединённые каналами связи. Информация может быть представлена в форме, удобной как для непосредственного восприятия, так и для автоматической обработки, передачи и использования в автоматизированных системах управления.

3.4.2. Измерительные сигналы[5]

В рамках единой измерительной системы информация о значении физических величин передается от одного средства измерения к другому с помощью сигналов.

Наиболее часто в качестве сигналов используются:

сигналы постоянного уровня (постоянные электрические токи и напряжения, давление сжатого воздуха, световой поток);

синусоидальные сигналы (переменный электрический ток или напряжение);

последовательность прямоугольных импульсов (электрических или световых).

Сигнал характеризуется рядом параметров. В первом случае единственным параметром сигнала является его уровень. Синусоидальный сигнал характеризуется своей амплитудой, фазой и частотой, последовательность прямоугольных импульсов - амплитудой, фазой, частотой, шириной импульсов или комбинацией импульсов различного уровня в течение определенного промежутка времени.

Для того, чтобы исходный сигнал стал измерительным, необходимо один из его параметров связать функциональной зависимостью с измеряемой физической величиной. Параметр сигнала, выбранный в качестве такового, называется информативным, а все остальные параметры - неинформативными. Процесс преобразования исходного сигнала в измерительный, т. е. преобразование одного из параметров исходного сигнала, генерируемого некоторым источником, в информативный параметр, называется модуляцией. В зависимости от вида модуляции измерительные сигналы можно классифицировать следующим образом.

Сигналы постоянного уровня характеризуются лишь одним параметром и поэтому могут быть модулированы только по уровню. Уровень сигнала явля­ется при этом мерой измеряемой величины.

Синусоидальные сигналы могут быть модулированы по амплитуде, фазе или частоте. В зависимости от того, который из этих параметров сигнала является мерой измеряемой величины, говорят об амплитудно-модулированных, фазо-модулированных или частотно-модулированных сигналах.

Последовательность прямоугольных импульсов может быть модулирована по амплитуде (амплитудно-импульсно модулированные сигналы), по частоте (частотно-импульсно модулированные сигналы), по фазе (фазоимпульсно модулированные сигналы) или по ширине импульсов (широтно-импульсно модулированные сигналы). Сигнал, в котором различным значениям измеряемой величины поставлена в соответствие определенная комбинация импульсов различного уровня, называется кодо-импульсным, или цифровым.

В зависимости от характера изменения информативного параметра сигнала по уровню и во времени измерительные сигналы подразделяются на:

непрерывные по уровню, или аналоговые, если их информативный параметр может принимать любые значения в заданном диапазоне;

дискретные, или квантованные по уровню, если их информативный параметр может принимать лишь некоторое ограниченное число значений в пределах заданного интервала;

непрерывные во времени, если они существуют в течение всего времени измерения и в любой момент может быть выведен на регистрацию;

дискретизированные, или квантованные по времени, если они несут инфор­мацию о значении измеряемой физической величины лишь в течение некоторых промежутков времени. К этой группе относятся, например, все виды импульсно-модулированных сигналов.

При анализе измерительных сигналов их принято описывать либо функция­ми времени, либо с помощью спектральных представлений, основанных на преобразованиях Фурье и Лапласа.

Погрешность измерений

Погрешность измерений - это отклонение значений величины, найденной путём её измерения, от истинного (действительного) значения измеряемой величины.

Погрешность прибора - это разность между показанием прибора и истинным (действительным) значением измеряемой величины.

Разница между погрешностью измерения и погрешностью прибора заключается в том, что погрешность прибора связана с определёнными условиями его поверки.

Погрешность может быть абсолютной и относительной.

Абсолютной называют погрешность измерения, выраженную в тех же единицах, что и измеряемая величина. Например, 0,4В, 2,5мкм и т. д. Абсолютная погрешность

D = А – Хист » А – Хд,

где А - результат измерения; Xист - истинное значение измеряемой величины; Xд - действительное значение измеряемой величины.

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины и выражается в процентах или долях измеряемой величины:

Краткая история развития метрологии - student2.ru .

В зависимости от условий измерения погрешности подразделяются на статические и динамические.

Статической называют погрешность, не зависящую от скорости изменения измеряемой величины во времени.

Динамической называют погрешность, зависящую от скорости изменения измеряемой величины во времени. Возникновение динамической погрешности обусловлено инерционностью элементов измерительной цепи средства измерений. Динамической погрешностью средства измерений является разность между погрешностью средства измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени.

Критерии качества измерений

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений, а также размером допустимых погрешностей.

Точность - это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям как систематическим, так и случайным.

Точность количественно оценивают обратной величиной модуля относительной погрешности. Например, если погрешность измерений равна 10-6, то точность равна 106.

Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это даёт возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ с необходимой достоверностью.

Под правильностью измерений понимают качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость - это качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Схо-димость измерений отражает влияние случайных погрешностей.

Воспроизводимость - это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, различными методами и средствами).

Единство измерений

Единство измерений- состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью.

Правовой основой обеспечения единства измерений служит законодательная метрология, которая представляет собой свод государственных актов и нормативно-технических документов различного уровня, регламентирующих метрологические правила, требования и нормы.

Технической основой ГСИ являются:

1. Система (совокупность) государственных эталонов единиц и шкал физических величин - эталонная база страны.

2. Система передачи размеров единиц и шкал физических величин от эталонов ко всем СИ с помощью эталонов и других средств поверки.

3. Система разработки, постановки на производство и выпуска в обращение рабочих СИ, обеспечивающих исследования, разработки, определение с требуемой точностью характеристик продукции, технологических процессов и других объектов.

4. Система государственных испытаний СИ (утверждение типа СИ), предназначенных для серийного или массового производства и ввоза из-за границы партиями.

5. Система государственной и ведомственной метрологической аттестации, поверки и калибровки СИ.

6. Система стандартных образцов состава и свойств веществ и материалов.

7. Система стандартных справочных данных о физических константах и свойствах веществ и материалов.

Различают децентрализованное и централизованное воспроизведение единиц.

При децентрализованном единицы воспроизводятся там, где выполняются измерения (м2 и др. производные физические величины).

При централизованном информация о единицах передаётся с места их централизованного хранения и воспроизведения. Оно осуществляется с помощью специальных технических средств, называемых эталонами.

Поверка средств измерений

Поверка средства измерений - совокупность операций, выполняемых органами государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

Средства измерений, подлежащие метрологическому контролю и надзору, подвергаются поверке при выпуске из производства или ремонта, при ввозе по импорту, при продаже и выдаче на прокат, а также при эксплуатации.

Поверку средств измерений осуществляют органы государственной метрологической службы (ГМС), государственные научные метрологические центры (ГНМЦ), а также аккредитованные метрологические службы юридических лиц.

Поверка проводится физическим лицом, аттестованным в качестве поверителя Порядок аттестации поверителей средств измерений", по нормативным документам, утверждаемым по результатам испытаний с целью утверждения типа. Если средство измерений по результатам поверки признано пригодным к применению, то на него и (или) техническую документацию наносится оттиск поверительного клейма и (или) выдается "Свидетельство о поверке". Если по результатам поверки средство измерений признано не пригодным к применению, оттиск поверительного клейма и (или) "Свидетельство о поверке" аннулируются и выписывается "Извещение о непригодности" или делается соответствующая запись в технической документации.

Существуют следующие виды поверок:

Первичная поверка - проводится для средств измерений утвержденных типов при выпуске их из производства, после ремонта, при ввозе из-за границы. При утверждении типа средств измерений единичного производства на каждое из них оформляется сертификат об утверждении типа; первичную поверку данные средства измерений не проходят.

Периодическая поверка проводится для средств измерений, находящихся в эксплуатации, через определённые межповерочные интервалы. Необходимость поверки обусловлена возможностью утраты измерительным средством метрологических показателей из-за временных и других воздействий.

Периодичность поверки зависит от временной нестабильности метрологических характеристик (метрологической надёжности), интенсивности эксплуатации и важности результатов, получаемых с помощью средств измерений.

Внеочередная поверка проводится: при необходимости подтверждения пригодности средства измерений к применению; в случае применения средства измерений в качестве комплектующего по истечении половины межповерочного интервала; в случае повреждения клейма или утери свидетельства о поверке; при вводе в эксплуатацию после длительной консервации (более одного межповерочного интервала); при отправке средств измерений потребителю после истечения половины межповерочного интервала.

Экспертная поверка проводится при возникновении разногласий по вопросам, относящимся к метрологическим характеристикам, исправности средств измерений и пригодности их к применению.

Инспекционная поверка выполняется в рамках государственного надзора или ведомственного контроля, для контроля качества первичных или периодических поверок и определения пригодности средств измерений к применению.

Краткая история развития метрологии

Потребность в измерениях возникла в незапамятные времена. Для этого в первую очередь использовались подручные средства. Например, единица веса драгоценных камней - карат, что в переводе с языков древнего юга-востока означает “семя боба”, “горошина”; единица аптекарского веса – гран, что в переводе с латинского, французского, английского, испанского означает “зерно”. Многие меры имели антропометрическое происхождение или были связаны с конкретной трудовой деятельностью человека.

Так, в Киевской Руси применялись в обиходе вершок - длина фаланги указательного пальца; пядь - расстояние между концами вытянутых большого и указательного пальцев; локоть - расстояние от локтя до конца среднего пальца; сажень - от “сягать”, “достигать”, т. е. можно достать; косая сажень - предел того, что можно достать: расстояние от подошвы левой ноги до конца среднего пальца вытянутой вверх правой руки; верста - от “верти”, “поворачивая” плуг обратно, длина борозды.

Древние вавилоняне установили год, месяц, час. Впоследствии 1/86400 часть среднего периода обращения Земли вокруг своей оси получила название секунды.

В Вавилоне во II в. до н. э. время измерялось в минах. Мина равнялась промежутку времени (равному, примерно, двум астрономическим часам), за который из принятых в Вавилоне водяных часов вытекала “мина” воды, масса которой составляла около 500 г. Затем мина сократилась и превратилась в привычную для нас минуту. Со временем водяные часы уступили место песочным, а затем более сложным маятниковым механизмам.

Важнейшим метрологическим документом в России является Двинская грамота Ивана Грозного (1550 г.). В ней регламентированы правила хранения и передачи размера новой меры сыпучих веществ - осьмины. Ее медные экземпляры рассылались по городам на хранение выборным людям - старостам, соцким, целовальникам. С этих мер надлежало сделать клейменые деревянные копии для городских померщиков, а с тех, в свою очередь, - деревянные копии для использования в обиходе.

Метрологической реформой Петра I к обращению в России были допущены английские меры, получившие особенно широкое распространение на флоте и в кораблестроении - футы, дюймы. В 1736 г. по решению Сената была образована Комиссия весов и мер под председательством главного директора Монетного двора графа М.Г. Головкина. В состав комиссии входил Л. Эйлер. В качестве исходных мер комиссия изготовила медный аршин и деревянную сажень, за меру веществ было принято ведро московского Каменномостского питейного двора. Важнейшим шагом, подытожившим работу комисии, было создание русского эталонного фунта.

Идея построения системы измерений на десятичной основе принадлежит французскому астроному Г. Мутону, жившему в XVII в. Позже было предложено принять в качестве единицы длины одну сорокамиллионную часть земного меридиана. На основе единственной единицы - метра - строилась вся система, получившая название метрической.

В России указом “О системе Российских мер и весов” (1835 г.) были утверждены эталоны длины и массы – платиновая сажень и платиновый фунт.

В соответствии с международной Метрологической конвенцией, подписанной в 1875 г., Россия получила платиноиридиевые эталоны единицы массы № 12 и 26 и эталоны единицы длины № 11 и 28, которые были доставлены в новое здание Депо образцовых мер и весов. В 1892 г. управляющим Депо был назначен Д.И. Менделеев, которую он в 1893 г. преобразует в Главную палату мер и весов - одно из первых в мире научно-исследовательских учреждений метрологического профиля.

Метрическая система в России была введена в 1918 г. декретом Совета Народных Комиссаров “О введении Международной метрической системы мер и выесов”. Дальнейшее развитие метрологии в России связано с созданием системы и органов служб стандартизации. Этот вопрос подробно рассмотрен в п. 1.2.

Метрологическая служба в Республике Беларусь создана в 1925 году. Возглавляет её Комитет по стандартизации, метрологии и сертификации при Совете Министров Республики Беларусь. Головным научно-практическим центром республики является Белорусский государственный институт метрологии (http://belgim.belhost.by). Задачи по обеспечению единства измерений реализуют на местах 15 региональных центров стандартизации, метрологии и сертификации. Работы по обеспечению единства измерений в Республике Беларусь осуществляются на основе Закона "Об обеспечении единства измерений" Краткая история развития метрологии - student2.ru (pdf-file 80kb). Госстандарт обеспечивает выработку и реализацию технической политики в области обеспечения единства измерений, осуществляет координацию деятельности и научно – методическое взаимодействие с метрологическими службами других органов государственного управления, зарубежными метрологическими службами.

Нормативная база государственной системы обеспечения единства измерений (ГСИ) - комплекс нормативных документов, включающих в себя государственные стандарты и другие нормативные документы, определяющие порядок передачи размера единиц величин предприятиям и организациям, организацию и порядок проведения испытаний, поверки и калибровки средств измерений.

Решением правительства в Республике введена Метрическая система единиц СИ.

Технической основой ГСИ является государственная эталонная база, сосредоточенная в Белорусском государственном институте метрологии.

Госстандарт Республики Беларусь осуществляет руководство:

Государственной службой времени и частоты и определения параметров вращения Земли (ГСВЧ);

Государственной службой стандартных образцов состава и свойств веществ и материалов (ГССО);

Государственной службой стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД).

Краткая история развития метрологии - student2.ru Госстандарт ведет Государственный реестр средств измерений Республики Беларусь

знак Государственного реестра средств измерений Республики Беларусь

Госстандарт Республики Беларусь осуществляет государственный метрологический контроль и надзор.

Государственный метрологический контроль включает:

утверждение типа средств измерений;

поверку средств измерений;

лицензирование деятельности юридических и физических лиц по изготовлению, ремонту, поверке, продаже и прокату средств измерений.

Государственный метрологический надзор осуществляется:

за выпуском, состоянием и применением средств измерений, аттестованными методиками выполнения измерений, соблюдением метрологических правил и норм.

Государственной метрологической службой ежегодно поверяется более трёх миллионов средств измерений, большая часть которых входит в законодательно регулируемую область и связаны с учётом материальных ценностей, охраной труда и здоровья граждан, охраной окружающей среды.

Республика Беларусь с 1994г. является членом Международной организации законодательной метрологии.

Наши рекомендации