Обсуждение результатов и модель «жесткого, срезаемого» пристенного слоя.
Наблюдаемый характер зависимости <vэ>/p = f(p) объясняется существованием в прослойке пристенных слоев толщиной 2ds. Их наличие приводит к тому, что реальное проходное сечение зазора s, по которому протекает жидкость, меньше, чем геометрическое S = bD (рисунок 34.3). С ростом приложенного давления и соответственно скорости течения равновесная толщина слоя на каждой из подложек уменьшается и, начиная с какого–то значительного перепада давления, проходное сечение зазора совпадает с геометрическим.
Поэтому для расчета параметров слоя рассмотрим его простейшую реологическую модель: на поверхностях обеих пластин, ограничивающих зазор, существует неподвижный (гидродинамически «жесткий») слой, периферийная часть которого «срезается» течением (рисунок 34.3). При постепенном увеличении скорости течения (за счет повышения перепада давления DP) толщина пристенного слоя убывает вплоть до нуля.
В такой модели, в соответствии с (34.8), рассматриваемая величина отношения <vэ>/p может быть представлена в виде:
, (34.10)
что позволяет по полученным экспериментальным зависимостям <vэ>/p = f(p) рассчитать как начальную толщину слоя d0s (ее значение при p = 0), так и ее текущее значение – величину ds в функции градиента давления или возрастающей с ним скорости течения жидкости <vэ>.
Рассчитанные таким образом значения толщины ds «жесткого, срезаемого» слоя в зависимости от средней линейной скорости <vэ> течения жидкости в данном зазоре для каждой из трех серий экспериментов приведены на рис.5. В принятой модели пристенного слоя для количественного описания явления его «срезания» течением зависимость ds = f(<vэ>) аппроксимировалась функцией:
. (34.11)
Здесь d0s (мкм) – толщина пристенного слоя при отсутствии течения, (<vэ>) – средняя (по сечению зазора) линейная скорость течения жидкости, v0 (мм/с) – параметр, характеризующий «жесткость» слоя, его способность к «срезанию» течением. Значения параметров d0s и v0 аппроксимирующей зависимости (34.11) приведены в таблице 34.2.
Рисунок 34.5 - Зависимость толщины пристенного слоя ds масла МРХ-30 (Т = 394 К) на стальной подложке в модели «жесткого, срезаемого течением слоя» от средней (по сечению) линейной скорости течения жидкости <vэ> в зазоре. Обозначения те же, что и на рисунке 34.4. Сплошная линия – аппроксимация D1 = 39,7 мкм (·) функцией (34.9) |
Таблица 34.2
Параметры МОДЕЛИ | Толщина зазора D, мкм | ||
39,7 | 35,0 | 31,0 | |
d0s, мкм | 3,4 | 3,2 | 3,1 |
V0, мм/с | 2,2 | 1,9 | 2,6 |
Реологические характеристики пристенного слоя масла МРХ-30 (Т = 294 К) на поверхности стали в модели гидродинамически «жесткого, срезаемого слоя»
Как следует из рисунка 34.5 и таблицы 34.2, при отсутствии течения пристенный слой масла МРХ-30 на стальной подложке имеет толщину d0s » 3 мкм. «Прочность» слоя на «срезание» сравнительно невелика – уже при скоростях течения <vэ> = v0 ~ 2 мм/с толщина слоя ds~ 1 мкм, а при <vэ> ~ 10 мм/с ничтожно мала. Рассчитанная величина d0s близка, но несколько меньше значений равновесной толщины ЭЖК слоя (d0s » 7 ¸ 9 мкм) алифатических углеводородов и масел, полученных в оптических измерениях [2].
Расхождение с результатами таких измерений по толщине d0s можно объяснить несовершенством модели слоя, принятой для расчетов этого его параметра. В частности, не в пользу модели гидродинамически неподвижного слоя, о его «не жесткости» свидетельствует то, что даже при наименьших зазорах в наших измерениях не было отмечено предельного напряжения сдвига.
По-видимому, модель ЭЖК слоя, участвующего в течении жидкости, более адекватно может описать его реологические свойства. Для развития такой модели представляется необходимым одновременно с вискозиметрическим опытом проведение независимого измерения (оптическими или иными способами) структурных характеристик (толщины, однородности и др.) ЭЖК слоя прослойки при ее течении.