Погрешности измерений физических величин

Погрешности измерений физических величин

Погрешности измерений физических величин - student2.ru

СОДЕРЖАНИЕ

1. Введение (измерения и погрешности измерений)

2. Случайные и систематические погрешности

3. Абсолютные и относительные погрешности

4. Погрешности средств измерений

5. Класс точности электроизмерительных приборов

6. Погрешность отсчета

7. Полная абсолютная погрешность прямых измерений

8. Запись окончательного результата прямого измерения

9. Погрешности косвенных измерений

10. Пример

Введение (измерения и погрешности измерений)

Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

Познакомимся с некоторыми характерными особенностями любых измерений.

Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

Измерения могут быть прямыми и косвенными.

Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину - линейкой, атмосферное давление- барометром.

Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

Рассмотрим пример измерения.

Погрешности измерений физических величин - student2.ru

Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью - отклонением измеренного значения физической величины от ее истинного значения.

Перечислим некоторые из причин, приводящих к появлению погрешностей.

1. Ограниченная точность изготовления средств измерения.

2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения ...).

3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза...).

4. Приближенный характер законов, используемых для нахождения измеряемых величин.

Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

Погрешность отсчета

Погрешность отсчета получается от недостаточно точного отсчитывания показаний средств измерений.

В большинстве случаев абсолютную погрешность отсчета принимают равной половине цены деления. Исключения составляют измерения стрелочными часами (стрелки передвигаются рывками).

Абсолютную погрешность отсчета принято обозначать D оА

Погрешности измерений физических величин

Погрешности измерений физических величин - student2.ru

СОДЕРЖАНИЕ

1. Введение (измерения и погрешности измерений)

2. Случайные и систематические погрешности

3. Абсолютные и относительные погрешности

4. Погрешности средств измерений

5. Класс точности электроизмерительных приборов

6. Погрешность отсчета

7. Полная абсолютная погрешность прямых измерений

8. Запись окончательного результата прямого измерения

9. Погрешности косвенных измерений

10. Пример

Наши рекомендации