Виды электрических измерений
Виды электрических измерений
В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.
К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y — искомое значение измеряемой величины; X —значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах. Например, измерения силы тока амперметром, температуры — термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.
Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F (Xl, Х2 ... Хn), где Y — искомое значение измеряемой величины; Х1, Х2, Хn — значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.
Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20 [1+α (T1-20)+β(T1-20)]
Основные методы измерений
Методы электрических измерений
В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.
Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина. Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.
Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения. К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.
Виды погрешностей
В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.
Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.
Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: абсолютными, относительными и приведенными.
Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: систематические и случайные.
Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра.
Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения (и случайная, и систематическая) проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из-за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений.
Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения.
Составляющие погрешности могут также делиться на: методическую, инструментальную и субъективную. Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Такая погрешность может возникать из-за ошибок в отсчете показаний или неопытности оператора. В основном же систематические погрешности возникают из-за методической и инструментальной составляющих. Методическая составляющая погрешности определяется несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов. Инструментальная составляющая появляется из-за собственной погрешности СИ, определяемой классом точности, влиянием СИ на итог и разрешающей способности СИ. Есть также такое понятие, как <грубые погрешности или промахи>, которые могут появляться из-за ошибочных действий оператора, неисправности СИ или непредвиденных изменений ситуации измерений. Такие погрешности, как правило, обнаруживаются в процессе рассмотрения результатов измерений с помощью специальных критериев. Важным элементом данной классификации является профилактика погрешности, понимаемая как наиболее рациональный способ снижения погрешности, заключается в устранении влияния какого-либо фактора.
Выделяют следующие виды погрешностей:
- абсолютная погрешность;
- относительна погрешность;
- приведенная погрешность;
- основная погрешность;
- дополнительная погрешность;
- систематическая погрешность;
- случайная погрешность;
- инструментальная погрешность;
- методическая погрешность;
- личная погрешность;
- статическая погрешность;
- динамическая погрешность.
Погрешности измерений классифицируются по следующим признакам.
По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.
По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.
По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
Абсолютная погрешность- это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.
Абсолютная погрешность вычисляется по следующей формуле:
ΔQn =Qn ΔQ0,
где AQn - абсолютная погрешность;
Qn - значение некой величины, полученное в процессе измерения;
Q0 - значение той же самой величины, принятое за базу сравнения (настоящее значение).
Абсолютная погрешность меры- это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.
Относительная погрешность- это число, отражающее степень точности измерения.
Относительная погрешность вычисляется по следующей формуле:
где ΔQ - абсолютная погрешность;
Q0 - настоящее (действительное) значение измеряемой величины.
Относительная погрешность выражается в процентах.
-
Приведенная погрешность- это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.
Нормирующее значение определяется следующим образом:
1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;
2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;
3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;
4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.
Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.
-
Инструментальная погрешность- это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.
-
Методическая погрешность- это погрешность, возникающая по следующим причинам:
1) неточность построения модели физического процесса, на котором базируется средство измерения;
2) неверное применение средств измерений.
-
Субъективная погрешность- это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.
Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.
-
Статическая погрешность- это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.
-
Динамическая погрешность- это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
-
Основная погрешность- это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).
-
Дополнительная погрешность- это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.
-
Нормальные условия- это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.
-
Рабочие условия- это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).
Рабочая область значений влияющей величины- это область значений, в которой проводится нормирование значений дополнительной погрешности.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
-
Аддитивная погрешность- это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).
-
Мультипликативная погрешность- это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.
Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.
Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.
Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.
Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:
1) систематические погрешности;
2) случайные погрешности.
В процессе измерения могут также появиться грубые погрешности и промахи.
-
Систематическая погрешность- это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).
Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.
Способы исключения систематических погрешностей делятся на четыре вида:
1) ликвидация причин и источников погрешностей до начала проведения измерений;
2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;
3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);
4) определение пределов систематической погрешности в случае, если ее нельзя устранить.
Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).
Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы
-
Способ введения поправокбазируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.
Способ замещения- состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.
Способ компенсации погрешности по знаку- состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.
Способ противопоставления- похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.
Случайная погрешность- это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.
Промахи и грубые погрешности- это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из-за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.
4. Представление результатов измерений. Правила округления результатов и погрешностей измерений.
Термоэлектрические приборы.
Эти приборы представляют собой соединение одного или нескольких термопреобразователей с магнитоэлектрическим И. М.
Термопреобразователи могут быть –
а) контактные и б) бесконтактные.
Основные части термопреобразователя:
1. Термопара.
2. Нагреватель.
Под действием тепла, выделяемого нагревателем, в термопаре возникает термо –э. д.с., зависящая от протекающего тока и измеряемая М. Э. прибором. Шкала прибора может градуироваться в единицах тока или другой величины, функционально связанной с током.
| |
|
1- нагреватель
2- термопара
3- изолятор (капля текла)
|
Использование термобатареи для увеличения
Чувствительности прибора.
|
Для увеличения чувствительности
Термопреобразователя пользуются
Мостовой схемой включения термопар
С И. М.
М=С1Et/r=C1C2I2/r=CI2
где С–Коэффициент, зависящий от материала нагревателя, условий теплоотдачи и др. параметров термопреобразователя.
Приборы используются для измерения Тока и напряжения в цепях постоянного и переменного тока повышенной и высокой частоты. Кл. точность 1,5-2,5
Достоинства:
1. Широкий диапазон частот (до сотен кГц);
2. Независимость показаний от формы кривых токов и напряжений.
3. Пригодность для цепей постоянного и переменного тока.
Недостатки:
1. Зависимость показаний от температуры окружающей среды.
2. Малая перегрузочная способность.
3. Малый срок службы термопар.
4. Значительное собственное потребление.
5. Необходимость применения И. М. высокой чувствительности.
Электронные приборы.
В общем случае электронные приборы представляют собой сочетание электронной части, выполняющей определенные преобразования измеряемых величин в ток или напряжение и электромеханического прибора (обычно М. Э.), стоящего на выходе. Реже в качестве выходного устройства используются чисто электронные приборы, например, электронно-лучевые трубки и специальные электронные лампы.
В настоящее время в измерительной технике широко применяются устройства с полупроводниковыми приборами.
Электронные приборы имеют широкое распространение в качестве:
1. Вольтметров.
2. Амперметров.
3. Омметров.
4. Частотомеров и
5. Нулевых приборов.
Наиболее широкое применение находят Электронные вольтметры.
Большое значение, особенно в лабораторной практике, имеют электронные генераторы переменного напряжения синусоидальной и специальной формы волны, маломощные источники постоянного тока и др.
12. Какие методы измерений вам известны?
13. Мегомметры, измерители сопротивления изоляции.
Методика измерения сопротивления изоляции кабеля мегаомметром
08/01/15
Любому человеку, который знаком с электричеством, должно быть известно о сопротивлении изоляции проводов. Её качество определяет надёжность и работоспособность электрического снабжения объекта. Согласно правилам эксплуатации электрооборудования необходимо осуществлять периодическую проверку качества такой проводки. Сопротивление изоляции кабеля является важной характеристикой для оборудования. Его измерение осуществляется при помощи специального прибора – мегаомметра.
Содержание:
1. Для чего необходимо проводить измерение сопротивления;
2. Какие факторы влияют на состояние изоляции?
3. Объект измерения;
4. Чем измеряется сопротивление изоляции;
5. Основные правила замеров
6. Кто должен проводить измерения?
7. Метод измерения.
8. Предельно допустимое значение сопротивления
9. С какой интервалом проверяют сопротивление изоляции?
10. Какое должно быть сопротивление изоляции?
11. От каких величин зависит?
Для чего необходимо проводить измерение сопротивления
Измерение сопротивления мегаомметром необходимо для того, чтобы установить возможные повреждения. При этом номинальное напряжение выбирается, исходя из напряжения самой обмотки.
Проверка сопротивления изоляции кабеля производят для определения её пригодности. В результате нарушения целостности изоляционного покрытия кабеля могут возникнуть различные поломки оборудования. Также, это может стать причиной возгорания. Стоит помнить, что производить осмотр изоляции после того, как она уже повреждена, не имеет смысла. Своевременное обнаружение отличия данного параметра от установленного нормируемого значения позволит предотвратить:
· Преждевременная поломка оборудования;
· короткого замыкания проводов, которое приводит к возможному возгоранию;
· поражение работающего персонала током;
· различные аварийные ситуации;
Какие факторы влияют на состояние изоляции? ↑
Срок эксплуатации электрических кабелей, особенно их изоляционной оболочки, не бесконечен. Существует множество различных факторов, которые воздействуют на состояние изоляции. К основным таким источникам относится следующее:
· Солнечный свет.
· Высокое напряжение.
· Различные температурные режимы.
· Влажность воздуха.
· Различные микроповреждения.
· Среда эксплуатации кабеля.
Объект измерения ↑
Измерение сопротивления изоляции при помощи мегаомметра может осуществляться на любом оборудовании электротехнического типа. Единственным исключением являются те части устройств, которые имеют рабочее напряжение ниже 60В.
Чем измеряется сопротивление изоляции ↑
Каждый электрик должен иметь в наличии прибор, с помощью которого можно осуществлять контроль состояния электрических цепей. Им как раз и является мегаомметр. С его помощью можно измерить большое значение сопротивления в цепи.
Данный прибор может быть выполнен разной конфигурации. Также, он должен иметь соответствующий сертификат и быть исправным. Точность измерения мегаомметра зависит от ежегодного его контроль в органах Госстандарта. Данные приборы бывают:
· С ручным приводом, когда внутри мегаомметра располагается встроенный генератор.
· Электронного типа. Питание такого прибора осуществляется от аккумулятора.
Также, мегаомметры классифицируются по пределам напряжения: 500, 1000, 2500 и 5000 Вольт. В тех случаях, когда сечение провода не превышает 16 мм², то применяют данный прибор на 1 кВ, а если оно больше либо проверяются бронированные кабеля, то используют мегаомметр на 2,5 кВ.
Основные правила замеров ↑
Первые измерения проводятся сразу же после изготовления кабеля, ещё на заводе-изготовителе. Вторая точка проверки должна быть уже на объекте, перед тем, как будут начаты монтажные работы, а также перед запуском системы электрического снабжения. Данная проверка позволит определить, не повредилась ли изоляция кабеля во время осуществления монтажных работ.
Обязательно измерение сопротивления изоляции необходимо перед и после ремонта линии питания.
Во время работы электрических сетей обязательно нужно периодически проводить данные замеры. Относится к этому необходимо с максимальной серьёзностью. Ведь своевременное обнаружение неисправности изоляционного слоя кабеля способно предотвратить возникновение различных аварийных ситуаций.
Кто должен проводить измерения? ↑
Для выполнения данного вида работ необходим соответствующий доступ. В связи с этим, замеры сопротивления изоляции осуществляют специальные бригады, в которые входят только лишь квалифицированные сотрудники. Все они должны пройти специальное обучение и иметь соответствующий разряд по электробезопасности.
Метод измерения ↑
Методика измерения сопротивления изоляции при помощи мегаомметра состоит из следующих этапов:
· В первую очередь необходимо убедиться в отсутствии напряжения в исследуемой сети.
· Если сопротивление участка цепи вам неизвестно, то перед началом измерения на приборе надо установить максимальное его значение.
· Необходимо отключить либо замкнуть все элементы электрической цепи, которые имеют низкий предел изоляции. Это надо сделать и с конденсаторами, а также полупроводниковыми приборами.
· Затем заземляется исследуемая цепь.
· В течение 1 минуты необходимо производить измерение сопротивления изоляции мегаомметром, вращая ручку генератора индукторного прибора либо нажимая на кнопку «высокое напряжение» на тех измерительных приборах, которые имеют сетевое питание. После этого снять показания со шкалы устройства.
· После завершения всех измерений необходимо снять электрический заряд с цепи. Сделать это можно путём её заземления.
Уровень влажности изоляции можно определить не только при помощи окончательных результатов прибора, но и зная характер изменения его показателей в момент измерения. Через 15 и 60 секунд работы прибора необходимо сделать запись его показаний. Отношение этих показателей называется абсорбция (КА = R60/R15). Она определяется отношением тока поляризации к току утечки. Если изоляция влажная, то этот коэффициент будет близок к единице. Ну а в случае сухой – значение R60 примерно на 30 – 50% будет больше, нежели R15.
Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения замера сопротивления изоляции кабеля, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать замер сопротивления изоляции кабеля или задать вопрос, звоните по телефону: 8 (495) 308-31-79.
Предельно допустимое значение сопротивления ↑
Величина этого параметра напрямую связано с предназначением самой электрической линией. Сопротивление кабеля, рассчитанного на 1кВ, обязано быть не ниже, чем 0,5 МОм. Данным значением обязаны обладать и вторичные цепи, всевозможные устройства защиты и контроля. Сам замер производится на протяжении одной минуты.
С какой интервалом проверяют сопротивление изоляции? ↑
Время, через которое необходимо осуществлять плановый замер данного параметра, а также все допустимые значения сопротивления изоляционной оболочки кабелей, более подробно описан в нормативной документации «ПТЭЭП».
· Сопротивление изоляции световых приборов, кабелей лифтом и кранов необходимо проверять 1 раз в год.
· Во всех остальных случаях – один раз на три года.
· Переносное электрическое и сварочное оборудование проверяется каждые полгода.
Если же не соблюдать данные требования, касающиеся своевременного измерения сопротивления изоляции мегаомметром, то это существенно увеличивает возможность возникновения различного рода аварийных опасных ситуаций. Помимо этого, это приводит и к наложению определённого штрафа от контролирующих органов.
В связи с этим, в каждой компании в обязательном порядке должна быть запланирована периодичность таких замеров. Опираться при этом необходимо на технические особенности и требования, предъявляемые к оборудованию. В основном, измерение сопротивления изоляции кабелей мегаомметром осуществляется во время эксплуатационных испытаний.
Какое должно быть сопротивление изоляции? ↑
Измеренная величина изоляционной оболочки должна соответствовать всем требованиям и нормам, которые приведены в нормативной документации ПУЭ. Причём, сопротивление изоляции обязано соответствовать норме для любого времени года. Также, стоит помнить, что с увеличением температуры окружающей среды, его значение снижается, и наоборот.
От каких величин зависит? ↑
В первую очередь, на сопротивление изоляционной оболочки кабеля влияет температурные показатели. Электрическое сопротивление проводника прямо пропорционально его длине и обратно пропорционально сечению. Из этого следует понятная для всех закономерность: чем толще сечение кабеля, тем меньше значение его сопротивления. Помимо этого, зависит оно и от вида материала, из которого изготавливается сам проводник.
Если взять за пример стальной провод, то он имеет большую величину сопротивление, нежели алюминиевый кабель. Проводимость изоляции провода зависит ещё и от влажности воздуха, который окружает его. Поэтому при колебаниях данной величины изменяется и затухание.
14. Классификация электронных вольтметров. Электронные вольтметры (ЭВ) бывают постоянного и переменного тока, универсальные.
15. Вольтметры подразделяются на группы:
16. · В1 – калибратор;
17. · В2 – постоянная тока;
18. · В3 – переменная;
19. · В4 – импульсный;
20. · В5 – фазочувствительный;
21. · В6 – селективный;
22. · В7 – универсальный;
23. · В8 – измеритель отношения и разности;
24. · В9 – преобразователи напряжения;
25. По принципу работы и устройства бывают: прямого преобразования и уравновешенного. Первые простые, но менее точные, вторые сложнее, но значительно точнее.
26. Электронные вольтметры классифицируют по следующим признакам:
27. · по способу измерения - приборы непосредственной оценки и сравнения;
28. · по назначению – приборы постоянного, переменного, импульсного напряжений, универсальные и селективные;
29. · по характеру измеряемого напряжения – амплитудные (пиковые), действующего и среднего напряжений;
30. · по частотному диапазону – низкочастотные и высокочастотные.
31. Электронные вольтметр постоянного тока состоят из входного устройства (ВУ), усилителя постоянного тока (УПТ), измерительного механизма (ИМ).
32.
33. Рис. 4.1 Структурная схема электронного вольтметра постоянного тока.
34.
35. Измеряемое напряжение постоянного тока поступает на входное устройство, представляющее собой многопредельный высокоомный резисторный делитель напряжения. Сигнал с ВУ поступает на вход УПТ, который помимо функции усиления сигнала согласует высокое выходное сопротивление ВУ с малым сопротивлением рамки - делителя входного напряжения ИМ магнитоэлектрической системы. Входное сопротивление ЭВ составляет десятки мегаом, что снижает его влияние на объект измерения.
36. При измерении слабых сигналов начинается сказываться дрейф УПТ, поэтому в электронных микровольтметрах исключают УПТ, постоянный ток преобразуют с помощью модулятора в переменный и используют усилитель переменного напряжения.
37.
38. Рис. 4.2 Структурная схема электронного вольтметра постоянного тока с модуляцией сигнала.
39.
40. ВУ – входной делитель, предназначен для согласования с нагрузкой (с источником сигнала);
41. ~У – усилитель переменного тока для измерения слабых сигналов;
42. УПТ – усилитель постоянного тока, характеризуется дрейфом нуля, что ограничивает измерение сверхмалых сигналов;
43. ИМ – устройство отображения;
44. М - ДМ – модулятор – демодулятор сигнала;
45. Г – генератор;
46. Недостатком усилителей переменного тока является зависимость показаний от частоты сигнала.
47. Диапазон измеряемых напряжений составляет от микровольт до тысячи вольт; классы точности – 1,5; 2,5, шкала линейная.
48. Электронные вольтметры переменного тока используются для измерения переменного напряжения, изменяющегося в широком диапазоне по амплитуде и частоте (до гигагерц).
49. Структурная схема ЭВ может содержать выпрямитель (В), что позволяет существенно расширить частотный диапазон измеряемого сигнала.
50.
51. Рис. 4.3 Структурные схемы электронных вольтметров переменного тока.
52.
53. Элементная база современных ЭВ основана на использовании полупроводниковых устройств микроинтегрального исполнения.
54. Широко используются универсальные электронные вольтметры, предназначенные для измерения различных параметров электрической цепи постоянного (переменного) тока: и др. Такие устройства содержат в себе ряд дополнительных блоков, преобразующих измеряемый параметр в напряжение, которое затем измеряется.
55.
56. Рис. 4.4 Структурная схема универсального электронного вольтметра.
57.
58. Импульсные вольтметры используются для измерения импульсных сигналов (амплитуды максимального значения) различной формы с высокой скважностью ( = 2 500, где - период, - длительность сигнала).
59. Принцип их работы основан на заряде конденсатора от стабилизированного источника и поддержание измеряемого сигнала неизменным во времени на уровне, соответствующем максимальному его значению. Для этого используют усилители с ООС.
60.
61.
62. Рис. 4.5 Структурная схема импульсного электронного вольтметра и его временные диаграммы.
63.
64. Диапазон измерений по частоте у приборов данного типа составляет 20 Гц…1 ГГц, по напряжению 100 мВ…1000 В, класс точности 4,0…10,0. Недостатк