Определение радиуса кривизны линзы
С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА
Цель работы: пронаблюдать на опыте интерференцию света в тонкой пленке (в воздушном слое между линзой и пластинкой) в виде колец Ньютона и познакомиться с методом определения радиуса кривизны линзы с помощью колец Ньютона.
Приборы и принадлежности: плосковыпуклая линза, поставленная выпуклой стороной на плоскопараллельную пластину и закрепленная на ней; микроскоп; источник света; небольшая часть линейки с миллиметровой шкалой.
Сведения из теории
В основе определения радиуса кривизны линзы или длины волны света с помощью колец Ньютона лежит явление интерференции. Сущность явления интерференции заключается в отсутствии суммирования интенсивностей световых волн при их наложении, т.е. при наложении световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних точках пространства возникают максимумы, а в других - минимумы интенсивности. Необходимым условием интерференции световых волн является их когерентность: постоянство во времени разности фаз колебаний вектора E(и соответственно вектора H) в произвольной точке встречи складываемых электромагнитных волн.
Известно, что два независимых источника света не дают когерентных волн. Для получения последних пучок (луч) света от одного источника делят каким-либо способом на две части или непосредственно выделяют два пучка (луча) от одного источника, направляют их разными путями, а затем сводят в одну область пространства.
В данной лабораторной работе два когерентных луча получают следующим образом. Плосковыпуклую линзу кладут выпуклой стороной на стеклянную пластину (рис. 7.1). На линзу направляют нормально к плоской поверхности пучок параллельных монохроматических лучей. Каждый луч проходит линзу и на верхней границе воздушного клина делится на два: один отражается от верхней границы клина, другой проходит клин и отражается от его нижней границы. Из-за малой кривизны линзы преломление света на ее выпуклой поверхности практически не происходит, и два отраженных луча идут вдоль падающего (см. рис. 7.1).
Они когерентны, так как получены путем разделения одного падающего луча.
Оптическая разность хода двух отраженных лучей будет одинакова для всех пар лучей, находящихся на равном расстоянии от точки касания линзы, т.е. там, где одинакова толщина слоя b. Поэтому наблюдаемые интерференционные полосы называются полосами равной толщины и имеют вид темных и светлых колец - колец Ньютона.
Обозначим через r радиус кольца Ньютона, соответствующий толщине воздушного слоя b (рис. 7.1). Между двумя отраженными в этом месте лучами оптическая разность хода
(7.1)
где l - длина волны в вакууме.
Добавление l/2обусловлено следующим. В электромагнитной волне векторы E, H, v составляют правовинтовую систему (рис. 7.2,а). При отражении вектор скорости v скачком меняет свое направление на противоположное. При этом должно измениться на противоположное направление векторов E или H. Опыты
а б в
Рис. 7.2
показывают, что при отражении от среды, оптически более плотной (с большим показателем преломления), меняет направление на противоположное вектор E(рис. 7.2,б). Изменение направления вектора E или H на противоположное эквивалентно скачкообразному изменению фазы колебаний E или H на p или, иначе, прохождению соответствующей составляющей электромагнитной волны расстояния l/2.
Поскольку световое воздействие на глаз, фотопластинку, фотоэлемент обусловлено вектором E, а неH, то за счет отражения второго луча от среды с большим показателем преломления к его оптической длине пути следует добавить l/2.
Найдем радиусы колец Ньютона в отраженном свете. Из рис. 7.1 видно, что
R2 = (R - b)2 + r2 = R2 - 2Rb + b2 + r2 , (7.2)
где R - радиус кривизны линзы. Из выражения (7.2) с учетом малости b2получим
2b = . (7.3)
Подставляя 2b из выражения (7.3) в выражение (7.1), получим
D= . (7.4)
Подставляя в (7.4) условие минимума D= (2k+1)l /2, а затем условие максимума D= kl, где k = 1,2,3..., определим радиусы темных и светлых колец в отраженном свете:
rт = , (7.5)
rсв = , (7.6)
где k - номер кольца.
Казалось бы, именно эти формулы могут быть использованы для определения R. Однако, чтобы исключить ошибку, связанную с определением номера кольца, для работы выбирают не одно, а два кольца. Пусть их номера k=i и k=m, тогда
(7.7)
Возводя выражения (7.7) в квадрат и вычитая одно из другого, получим
r2 т,i - r2 т,m = (i - m) l R . (7.8)
Формула (7.8) справедлива и для светлых колец. Так как центр кольца устанавливается с большой погрешностью, на опыте измеряют не радиус, а диаметр кольца D. Тогда формула (7.8) примет вид
D2i - D2m = 4(i - m)l R . (7.9)
Описание установки
Стеклянная пластина и плосковыпуклая линза, радиус выпуклой поверхности которой следует определить, помещаются на столик микроскопа, с помощью которого и наблюдаются увеличенные кольца Ньютона. В качестве источника света используется газоразрядная неоновая лампочка. Диаметры колец измеряются по шкале, вмонтированной в окуляр. Цена деления окулярной шкалы b определяется экспериментально.
Выполнение работы