Погрешности прямых измерений

Принято различать три типа ошибок погрешностей прямых измерений: промахи, систематические погрешности и случайные погрешности.

1. Промахи -грубые ошибки, существенно превышающие ожидаемую при данных условиях погрешность. Они вызываются невнимательностью экспериментатора, использованием неисправных приборов и т.д. Как правило, промахи быстро выявляются; наблюдения, содержащие их, следует отбрасывать, как не заслуживающие доверия.

2. Случайные погрешности - погрешности, вызванные большим числом случайных неконтролируемых помех (сотрясением фундамента здания, изменением напряжения электрической сети, реакцией наблюдателя). В итоге при повторных наблюдениях получаются несколько отличающиеся друг от друга результаты. Исключить случайные погрешности нельзя, можно лишь оценить их величину. Как это сделать, нам подсказывает так называемая теория погрешностей. В основе этой теории лежат два предположения, подтверждаемых опытом:

а) при большом числе измерений случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто;

б) большие (по абсолютной величине) погрешности встречаются реже, чем малые.

Именно из этих предположений следует, что при многократных измерениях величины х наиболее близким к ее истинному значению Погрешности прямых измерений - student2.ru х0 является среднее арифметическое значение:

Погрешности прямых измерений - student2.ru , (1.2)

где n - число измерений.

Упомянутая выше теория погрешностей дает возможность найти величину случайной погрешности Dхсл, т.е. расхождение между х Погрешности прямых измерений - student2.ru и <x>. При этом исходят из следующих соображений.

         

Пусть a характеризует вероятность того, что истинное значение х Погрешности прямых измерений - student2.ru измеряемой величины отличается от <x> на величину, не большую Dхсл, т.е. вероятность того, что истинное значение попадет в интервал от <x> - Dxсл до <x>+Dxсл (рис. 1.1). Например, если a = 0,95, то это означает, что примногократных повторениях опыта ошибки отдельных измерений в 95 случаях из 100 не превысят значения Dхсл. Вероятность a называется доверительной вероятностью или надежностью, а интервал значений (<x>± Dxсл) -доверительным интервалом.Как видно, Dxсл - это полуширина доверительного интервала. Ее-то и принимают за абсолютную случайную погрешность.

Задача, очевидно, состоит в том, чтобы отыскать Dxсл при наперед заданном значении a. Решению этого вопроса помогает существующая между Dxсл и a математическая связь. Качественно эта связь ясна: чем с большей надежностью мы хотим указать результат данных измерений, тем больше должен быть доверительный интервал.

В теории погрешностей в качестве единицы ширины доверительного интервала выбрана так называемая средняя квадратичная погрешностьрезультата измерений

Погрешности прямых измерений - student2.ru S = Погрешности прямых измерений - student2.ru . (1.3)

Здесь Погрешности прямых измерений - student2.ru - среднее для измеренных n значений Погрешности прямых измерений - student2.ru (i=1,2,3,…,n); Погрешности прямых измерений - student2.ru - отклонение i - го наблюдения от среднего значения, n - число измерений.

Учитывая сказанное, было предложено в случае небольшого числа измерений (именно так обстоит дело в учебных лабораториях) вычислять полуширину доверительного интервала по формуле:

сл Погрешности прямых измерений - student2.ru , (1. 4)

где ta,n - некоторое, зависящее от a и n, число, называемое коэффициентом Стьюдента. Зависимость ta,n от n понятна: чем больше n, тем меньше Погрешности прямых измерений - student2.ru отличается от истинного значения, и тем меньше будет доверительный интервал, точнее результат измерения, а значит меньше ta,n.

3. Систематическиминазываются погрешности, которые сохраняют свою величину и знак во время эксперимента. Систематические ошибки вызываются разными причинами, односторонне влияющими на результат измерений:

-ограниченной точностью приборов (измерительных инструментов) - приборные (инструментальные погрешности;

-неправильной настройкой (неравные плечи весов, стрелка не установлена на ноль и т.д.);

-в расчетных формулах не учтено влияние некоторых второстепенных факторов (например, при взвешивании не учитывается сила Архимеда, при измерении электросопротивления не учитывается сопротивление проводящих проводов);

-округлениями, которые производятся при измерениях и вычислениях.

В большем числе случаев систематические погрешности могут быть изучены и скомпенсированы путем внесения поправок в результаты измерений. Если же сделать этого нельзя (или сложно) необходимо правильно учесть вклад систематической ошибки в общую ошибку измерений.

При выполнении лабораторных работ приходится оценивать, как правило, следующие систематические ошибки:

а) Приборную (инструментальную) погрешность. Погрешность показания прибора (например, связанная с неправильностью разбивки шкалы амперметра, линейки...) является вполне определенной. При обработке результатов измерений этот вид погрешностей задается в виде так называемой предельной погрешности прибора (коротко - приборной погрешности), указывающей, какова максимально возможная погрешность при использовании данного прибора. При этом для одних приборов указывается предельная абсолютная погрешность Dхпр, Погрешности прямых измерений - student2.ru для других (электроизмерительных, части оптических) предельная относительная погрешность (класс точности прибора к).

Классом точности прибора называется отношение предельной абсолютной погрешности к максимальному значению измеряемой прибором величины

Погрешности прямых измерений - student2.ru 100 % . (1.5)

Классов точности семь: 0,02; 0.05; 0,1; 0.5; 1; 2,5; 4. Это число указано на шкале прибора. Зная класс точности и пределы измерения прибора, можно рассчитать его предельную погрешность

Погрешности прямых измерений - student2.ru . (1.6)

Приборная погрешность других приборов равна точности измерительного прибора, под которой понимают ту наименьшую величину, которую можно надежно определить с помощью данного прибора. Точность прибора зависит от цены наименьшего деления его шкалы и указывается на самом приборе или в его паспорте. Если этих данных нет, то пользуются следующими правилами. Если прибор снабжен нониусом (например, штангенциркуль), то его точность (и приборная погрешность) равна цене наименьшего деленияDхпр=D . При этомD = l / m, где l - цена наименьшего деления основной шкалы прибора, m- число делений нониуса; при отсутствии нониуса (линейка, термометр,...) точность прибора равна половине наименьшего деления шкалы прибора: Погрешности прямых измерений - student2.ru .

Приборная погрешность Dхпр представляет собой наибольшую погрешность, даваемую прибором. Действительная же погрешность прибора Dхпрст (стандартное отклонение) носит случайный характер и меньше Dхпр. Строгих формул для перевода Dхпр в Dхпрст нет, чаще всего пользуются выражением

Погрешности прямых измерений - student2.ru (1.7)

гдеПогрешности прямых измерений - student2.ru - коэффициент Стьюдента при n = ¥.

Примечание: для электроизмерительных приборов Dхпр не зависит от значения измеряемой величины хизм. Относительная же погрешность измерения, т.е. Dхпр/ хизм, зависит от хизм: чем больше хизм, тем меньше относительная погрешность. Поэтому при измерениях рекомендуется выбирать такие пределы измерения, чтобы отсчеты на них производились бы по второй половине шкалы прибора.

б)Погрешность округления при измерении. При измерениях показания приборов часто лежат между делениями шкалы. Отсчет “на глаз” долей деления затруднительны. Поэтому показания приборов, как правило, округляются - возникает погрешность округления при измерениях.

Интервал округления может быть различным. Чаще всего это либо цена наименьшего деления шкалы - D, либо половина цены деления. Очевидно, максимальная погрешность округления равна половине интервала округления, т.е. величине D/2. Действительная же погрешность меньше, и при доверительной вероятностиa за погрешность округления принимают величину

Погрешности прямых измерений - student2.ru . (1.8)

в)Погрешность округления при вычислениях.Этот вид погрешности приходится учитывать только при косвенных измерениях. По этой причине сведения по данной погрешности в следующем разделе.

4. Полная погрешность. Как уже отмечалось, в реальных условиях присутствуют как случайные, так и систематические погрешности. В теории вероятности показывается, что погрешность, обусловленная несколькими независимыми причинами, определяется квадратичным суммированием, т. е. полная абсолютная погрешность прямого измерения

Погрешности прямых измерений - student2.ru (1.9)

Относительная погрешность

Погрешности прямых измерений - student2.ru (1.10)

При этом доверительная вероятность a выбирается одинаковой для всех видов погрешностей.

Некоторые из слагаемых под знаком корня могут быть настолько малыми по сравнению с другими, что ими можно пренебречь (малыми считаются ошибки, которые не превышают 30 % от максимальной).

В заключение отметим, что количество необходимых измерений определяется соотношением приборной и случайной погрешностей. Если при повторных измерениях получается одно и то же значение, то это означает, что случайная погрешность в данном методе измерений значительно меньше приборной и большее число измерений не изменит общей ошибки.

При значительной случайной погрешности (при повторных измерениях получаются отличные друг от друга значения) число измерений лучше выбрать такими, чтобы случайная погрешность среднего арифметического была меньше приборной, или, по крайней мере, одного с ней порядка.

Наши рекомендации