Б) по закономерности возникновения
Общие понятия и определения
Измерение – это нахождение значений физической величины специальными техническими средствами. Измерения позволяют количественно познать свойства физических объектов.
Выбор измерительных средств и оценка точности производимых ими измерений осуществляется на основании их метрологических характеристик.
Метрологические характеристики средств измерений – это оценка их свойств, оказывающих влияние на результаты измерений и на погрешности измерений.
Стандарты устанавливают номенклатуру метрологических характеристик средств измерений и их способы представления в нормативно-технической документации.
Классификация видов измерений
По способам получения результатов:
По назначению:
Классификация погрешностей и методы обработки результатов измерений
При измерениях имеет место отличие показаний прибора от истинного значения измеряемой величины – погрешность.
Классификация погрешностей:
а)
|
Относительную погрешность стрелочных измерительных приборов часто выражают в процентах от верхнего предела измерений :
Если шкала прибора при этом начинается с нулевой отметки, то относительная погрешность прибора одновременно является и приведённой.
б) по закономерности возникновения
Случайные погрешности: Пусть проводятся многократные измерения некоторой величины в неизменных с точки зрения экспериментатора условиях и при влиянии только случайных внешних факторов. В этом случае результат каждого -го измерения будет отличаться от истинного на случайную величину , причем, как правило, он не совпадает с результатами остальных измерений: ( ). Следовательно, истинное значение есть величина вероятностная и может быть найдено на основе статистически выявляемых закономерностей. Кривые статистических распределений позволяют определить доверительный интервал изменения измеряемой величины за пределы которого она не выходит с указанной экспериментатором доверительной вероятностью (доверительная вероятность характеризует надежность задания случайной погрешности в виде доверительного интервала).
В частности, для часто используемого на практике нормального (гауссовского) закона распределения случайной погрешности взаимосвязь между доверительным интервалом и доверительной вероятностью представлена на рисунке 1.
где – оценка истинного значения (среднее значение по результатам измерений);
– среднее квадратичное отклонение.
Рис. 1. Плотность распределения случайной погрешности
Как видно из рисунка, доверительная вероятность геометрически представляет собой площадь фигуры, ограниченной снизу началом координат, сверху – плотностью распределения погрешности измерений , а слева и справа – прямыми, параллельными оси ординат и проходящими через точки, отстоящие от оценки истинного значения измеряемой величины на . Таким образом, чем больше требуется доверительная вероятность того, что ошибка измерений не выйдет за границы доверительного интервала (площадь выделенной заливкой на рис. 1 фигуры можно изменять, перемещая левую и правую ограничивающие линии вдоль оси абсцисс), тем больше сам доверительный интервал.
Принято доверительный интервал выражать как число, кратное среднему квадратичному отклонению (см. рис. 1):
,
где .
В этом случае значения доверительной вероятности уже рассчитаны.
Например, при:
– доверительная вероятность того, что измеренное значение величины не выйдет за пределы составит , то есть при проведении 100 измерений результаты примерно 68 измерений будут в пределах , а 32 – выйдут за пределы доверительного интервала;
– доверительная вероятность составит ;
– доверительная вероятность составит ;
– доверительная вероятность составит .
В большинстве практических применений ограничиваются значением доверительного интервала .