Степень автоматизации измерений

Схема на примере электронного тахеометра TOPCON GPT-3000

степень автоматизации измерений - student2.ru

степень автоматизации измерений - student2.ru

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТАХЕОМЕТРОВ

На замыкающей стадии развития оптико-электронных геодезических приборов стоит универсальный инструмент - Электронный тахеометр, неслучайно занимающий прочное место в ряду приборов геодезического оборудования. Тахеометр производит любые угломерные измерения одновременно с измерением расстояний и по полученным данным проводит инженерные вычисления, сохраняя всю полученную информацию. С помощью электронного тахеометра в полевых условиях можно получить информацию об измеряемых горизонтальных и вертикальных углах и расстояниях, автоматически выполнить необходимые вычисления по плановому и высотному положению ситуации. При наличии компьютера процесс может быть автоматизирован, включая получение готовой карты местности за считанные минуты. Возможность занесения в запоминающее устройство допустимых погрешностей измерений(например, циклической погрешности дальномера, коллимационной погрешности, отклонения места нуля, отклонение оси вращения от отвесной линии за счет введения двухкоординатных электронных уровней и др.) позволяет повысить точность и производительность измерений. Встроенное программное обеспечение позволяет выполнить следующие геодезические задачи: обратную засечку, уравнивание теодолитного хода, вычисление площадей, разбивку кривых и т.д.

Назначение прибора

Электронным тахеометром называется устройство, объединяющее в себе теодолит и светодальномер. Одним из основных узлов современных электронных тахеометров является микроЭВМ, с помощью которой можно автоматизировать процесс измерений и решать различные геодезические задачи по заложенным в них программам. Увеличение числа программ расширяет диапазон работы тахеометра и область его применения, а так же повышает точность работ. Наличие регистрирующих устройств в тахеометрах позволяет создать автоматизированный геодезический комплекс: тахеометр – регистратор информации – преобразователь – ЭВМ – графопостроитель, обеспечивающий получение на выходе конечной продукции – топографического плана в автоматическом режиме. При этом сводятся к минимуму ошибки наблюдателя, оператора, вычислителя и картографа, возникающие на каждом этапе работ при составлении плана традиционным способом.

Тахеометр– геодезический прибор для измерения расстояний, горизонтальных и вертикальных углов. Используется для вычисления координат и высот точек местности при топографической съёмке местности, при разбивочных работах, переносе на местность высот и координат проектных точек.

Тахеометры, в которых все устройства (угломерные, дальномерные, зрительная труба, клавиатура, процессор) объединены в один механизм, называют интегрированными тахеометрами.

Тахеометры, которые состоят из отдельно сконструированного теодолита (электронного или оптического) и светодальномера, называют модульными тахеометрами.

Геометрия корпуса

Посадочные места под ось зрительной трубы должны быть параллельны между собой и расположены на одной высоте над основанием корпуса. Ось посадочных мест -строго перпендикулярна плоскости колонок, должна пересекаться с осью вращения тахеометра и быть перпендикулярна ей . Поскольку корпуса приборов отливаются, а у форм есть пределы допуска, на правой колонке корпуса посадочное место под ось трубы делают подвижным для юстировки неравенства колонок. Самым распространенным методом является применение эксцентрической шайбы (лагера) с котировочными винтами для разворота шайбы.

Ось вращения тахеометра должна быть перпендикулярна основанию корпуса и оси вращения зрительной трубы. Поэтому посадочное место под ось вращения тахеометра обрабатывается фрезерованием. К корпусу тахеометра крепится компенсатор, который является электронным уровнем прибора. В случае, когда компенсатор одноосевой, он устанавливается параллельно зрительной трубе для компенсации продольного наклона. При этом посадочные места компенсатора параллельны плоскости колонки.

Установка зрительной трубы зависит от конструкции ее оси. Чаще используется конструкция из полуосей. Это выглядит так: на зрительную трубу устанавливают две полуоси, которые вставляются во втулки корпуса. Затем перпендикулярность осей трубы и вращения юстируют лагерной эксцентрической втулкой .

Следующая задача состоит в недопущении хода зрительной трубы вдоль оси ее вращения. Для этого к торцу оси в левой колонке корпуса на болтах крепят посадочное место лимба вертикального круга, что ограничивает ход зрительной трубы вправо. В правой колонке корпуса на полуось надевают хомут механизма для фиксатора и наводящего винта зрительной трубы. Это ограничивает ход зрительной трубы влево. Теперь труба жестко закреплена по торцам оси и может только вращаться. Но в методе есть один недостаток.

Очень важно, чтобы визирная ось зрительной трубы пересекалась с осью вращения тахеометра. Несоблюдение этого условия влечет за собой ближнюю компенсацию. Поэтому некоторые заводы-изготовители применяют другой способ, при котором ось вращения проходит через зрительную трубу.

Поверки

Электронный тахеометр, как любой геодезический прибор, должен быть поверен и отъюстирован перед производством работ. Учитывая совмещенность дальномерных и угловых измерений, в тахеометре должны выполняться геометрические условия взаимного положения оптико-механических и оптико-электронных осей. Поэтому полный набор поверок и юстировок проводится на специальных стендах или в сервисных центрах. Однако ряд основных поверок можно выполнить в полевых условиях. Более того, регулярное проведение некоторых поверок является обязательным, так как измерения электронным тахеометром проводятся при одном положении ВК прибора, а поправки за коллимацию, место нуля ВК и место нуля компенсатора наклона вертикальной оси автоматически вводятся в результаты измерений. Неучтенные изменения этих поправок приводят к снижению точности результатов измерений. Перед поверками необходимо внимательно изучить методику их проведения и юстировки по руководству к эксплуатации конкретной модели тахеометра.

В электронных тахеометрах расстояния измеряются по разности фаз испускаемого и отраженного луча (фазовый метод), иногда (в некоторых современных моделях) по времени прохождения луча лазера до отражателя и обратно (импульсный метод). Точность измерения зависит от технических возможностей модели тахеометра, а также от многих внешних параметров: температура, давление, влажность и т.п. Диапазон измерения расстояний зависит так же от режима работы тахеометра: отражательный или безотражательный. Дальность измерений при безотражательном режиме напрямую зависит от отражающих свойств поверхности, на которую производится измерение. Дальность измерений на светлую гладкую поверхность (штукатурка, кафельная плитка и пр.) в несколько раз превышает максимально возможное расстояние, измеренное на темную поверхность. Максимальная дальность линейных измерений для режима с отражателем (призмой) – до пяти километров (при нескольких призмах еще дальше); для безотражательного режима – до одного километра. Модели тахеометров, которые имеют безотражательный режим могут измерять расстояния практически до любой поверхности, однако следует с осторожностью относиться к результатам измерений, проводимым сквозь ветки, листья, потому как неизвестно, от чего отразится луч, и, соответственно, расстояние до чего он промеряет. Существуют модели тахеометров, обладающие дальномером, совмещенным с системой фокусировки зрительной трубы. Преимущества таких приборов заключается в том, что измерение расстояний прозводится именно на тот объект, по которому в данный момент выставлена зрительная труба прибора. Точность угловых измерений современным тахеометром достигает половины угловой секунды (0°00'00,5”), расстояний – до 0.6мм + 1мм на км. Точность линейных измерений в безотражательном режиме – 2мм + 2мм на км.

Современные тахеометры оборудованы вычислительными запоминающими устройствами, позволяющими сохранять измеренные или проектные данные, вычислять координаты точек, недоступных для прямых измерений по косвенным наблюдениям, некоторые современные модели дополнительно оснащены системой GPS.

Встроенный микропроцессор позволяет тахеометру самостоятельно решать широкий спектр задач:

· прямая и обратная геодезическая задача;

· рассчет площадей, вычисление засечек, тахеометрическая съемка и вынос в натуру;

· измерения относительной базовой линии;

· определение недоступных расстояний и высот.

Электронный тахеометр автоматически учитывает при измерениях влияние кривизны Земли и рефракции атмосферы. Для производства геодезических работ с использованием электронных тахеометров применяют специальные отражательные системы. Компьютерные тахеометры – современные электронные тахеометры, обеспечивающие прямой обмен информацией с полевыми и базовыми персональными компьютерами, снабжённые сервоприводами, дистанционным компьютерным управлением, системами автоматического слежения за целью и набором универсальных, полевых геодезических программ.

Тахеометры обладают следующими полезными возможностями:

· электронной системой слежения за вертикальностью прибора (электронные уровни и компенсатор);

· лазерным дальномером, который, помимо измерений с отражателем, часто оснащен также безотражательным режимом измерения расстояний (позволяет тахеометру производить измерения непосредственно на поверхность объекта);

· памятью, в которой хранятся все измерения и рассчеты, выполненные тахеометром системой учета коллимации и рефракции, что дает возможность работать с тахеометром только при одном круге;

· более совершенные модели тахеометров оснащены сервомоторами и возможностью автоматического захвата и слежения за отражателем. Такой тахеометр производит измерения в роботизированном режиме при минимальном участии наблюдателя.

СТЕПЕНЬ АВТОМАТИЗАЦИИ ИЗМЕРЕНИЙ

При производстве большинства геодезических работ, как правило, требуется выполнять как угловые, так и линейные измерения, для чего обычно использовались оптические тахеометры. Еще в конце ХЕХ века венгерский геодезист Тихи ввел в обиход слово "тахеометр", которое в переводе с греческого языка означает "быстроизмеряющий".

Позднее для этих целей стали использовать светодальномеры и теодолиты. Когда были созданы компактные светодальномеры, то конструкция их предусматривала возможность установки на теодолит. И в настоящее время конструкции светодальномеров, выпускаемых Уральским оптико-механическим заводом, предусматривают возможность их установки на теодолит. Позднее начали выпускаться приборы в общем корпусе для оптического теодолита и светодальномера. Мощным толчком в геодезическом приборостроении стал выпуск электронного тахеометра AGA-136 (Швеция), в котором оптическая система отсчета углов была заменена на электронную, т. е. в едином корпусе размещался прибор, который совмещал функции светодальномера и цифрового теодолита. В дальнейшем в электронный тахеометр был введен полевой компьютер, открыв тем самым начало выпуска компьютезированных электронных тахеометров. Использование электронных тахеометров позволило полностью отказаться от ведения полевого журнала.

В современные приборы начали встраивать мощные полевые компьютеры для обработки результатов измерений и решения непосредственно в поле типовых геодезических задач, расширились потенциальные возможности приборов за счет значительного улучшения технических характеристик.

Каждый электронный тахеометр имеет зрительную трубу, блок измерения расстояний (светодальномер), блок измерения углов (цифровой теодолит) и спецвычислитель, в который встроены программы для решения непосредственно в поле типовых геодезических задач.

Встроенное программное обеспечение большинства электронных тахеометров позволяет решать целый ряд геодезических задач. Например, электронные тахеометры фирмы Sokkia (Япония), которые отличаются высокой надежностью и точностью,

имеют программное обеспечение, позволяющее решать следующие задачи:

— определять горизонтальное проложение и превышение;

— решать прямую и обратную геодезические задачи;

— вычислять превышения и расстояния между неприступными точками, определять высоту объектов, на которые невозможно установить отражатель, например, линии электропередачи, высотные здания, стены и т.д.;

— выполнять расчет площади и периметра снимаемого участка;

— помещать в отдельный список для последующего быстрого поиска выносимые в натуру точки;

— осуществлять вынос в натуру точек по углу и расстоянию, по координатам, по створу между двумя точками на задаваемую вертикальную или наклонную плоскость.

Тахеометер снабжен сервосистемой вращения осей, при создании которой впервые в мировой практике компенсацию ошибок за наклон вертикальной и горизонтальной осей вращения, коллимационной погрешности. Кроме того, с целью уменьшения ошибок отсчета и наведения прибор выполняет усреднение результатов.

Эти приборы широко применяются для автоматизации управления строительными машинами и механизмами Необходимо отметить, что использование безотражательных электронных тахеометров не только увеличивает производительность работ, но при этом повышается и безопасность их выполнения. Последнее особенно важно, когда выполняются работы вблизи мест оживленного движения транспорта. Безотражательные электронные тахеометры позволяют геодезистам измерять объекты, оставаясь вне опасных зон. С помощью этих приборов легко измерять недоступные обычному дальномеру точки, производить съемку на опасных для установки отражателя объектах, например, дорогах, мостах и т. д., так как нет необходимости перекрывать движение транспорта и при этом соблюдается полная безопасность работ. Способность выполнять безотражательные измерения на большие расстояния особенно важна при съемке фасадов здания с высокой точностью. Эти приборы могут применяться для задания и развития съемочного обоснования, выноса проекта в натуру, управления и слежения за строительной техникой, а также для съемочных работ и др.

Все приборы достаточно просты в управлении и, как правило, имеют двухстороннюю алфавитно-цифровую клавиатуру. Клавиши меню обеспечивают управление проектами съемки, функциями координатной геометрии, настройками инструмента, просмотром и редактированием данных и т. д. Электронные тахеометры снабжены компактными визирными трубами, служащими для приема и передачи оптических сигналов при светодальномерных измерениях. Они имеют совмещенную оптику, центральная часть которой является передающей, а периферийная — приемной. При использовании такой конструкции уровень сигнала, отраженного от марки или диффузного отражателя, не меняется (если угол наклона не более 30°), что позволяет обеспечить высокую точность линейных измерений.

Для связи с компьютером можно использовать несколько форматов передачи данных, что обеспечивает работу прибора с различным программным обеспечением. С использованием простого программного обеспечения, входящего в комплект тахеометра, данные могут загружаться из компьютера в электронный тахеометр.

Как и цифровые теодолиты, электронные тахеометры снабжены двухосевыми датчиками угла наклона, работающими в диапазоне 3'—5'. Двухосевой датчик наклона автоматически отслеживает наклон инструмента по осям X и У, а поправки в отсчеты по вертикальному и горизонтальному кругам вводятся автоматически. В результате упрощается и ускоряется процесс приведения прибора в рабочее положение (приведение вертикальной оси вращения алидады в вертикальное положение). Функция исправления коллимационных ошибок автоматически вводит коррекцию в измеряемые направления. По этой причине угловые измерения можно выполнять при одном положении круга без снижения точности результатов измерений. Они снабжены оптическим или лазерным центриром.

Сегодня две основные концепции развития полевых геодезических систем определяют появление новых приборов и систем. Какая концепция будет преобладать в будущем и какие принципиально новые системы поступят на рынок геодезического оборудования, покажет время. Жесткая конкуренция на международном рынке электронных тахеометров обусловливает их непрерывное совершенствование, заставляя производителей находить все более эффективные решения, упрощать процессы измерений и использовать максимально удобные пользовательские интерфейсы, создавать интегрированные системы, комбинирующие функции компьютеров, тахеометров, спутниковых приемников, инерциальных систем.

Современные тахеометры значительно различаются не только своими техническими характеристиками, конструктивными особенностями, но и прежде всего ориентацией на конкретного пользователя или определенную сферу применения. Поэтому тахеометры можно также классифицировать по их предназначению для решения конкретных задач. Точность и дальность измерений в данном случае уже не играют существенной роли. Определяющим становится фактор эффективности применения прибора для решения конкретного типа задач.
Например, для выполнения традиционных работ по землеотводам достаточно иметь простой механический тахеометр с минимальным набором встроенных программ. В то же время для работ по изысканиям и строительству автомагистралей наиболее эффективным будет применение роботизированного тахеометра, имеющего функции автоматического слежения за отражателем, контроллер и программы, позволяющие не только работать с проектными данными, но и воспроизводить полученные результаты непосредственно в поле на экране контроллера.

Современный тахеометр должен полностью удовлетворять всем требованиям пользователя. С другой стороны, желательно иметь возможности обновления и модернизации системы — добавление новых функций ,программ и даже изменение технических характеристик. Этим условиям полностью соответствуют тахеометры, имеющие модульное строение. Были выпущены две базовые модели тахеометров этой серии — механическая и имеющая сервоприводы, позволяющие автоматизировать не только наведение на призму, но и слежение за перемещающимся отражателем.

В начале 90-х годов были заложены основные принципы развития электронных тахеометров: модульность — с точки зрения конструктивности и автоматизация
(роботизация) — с точки зрения функциональности.

Современный электронный тахеометр, как и его оптический предшественник, измеряет углы и расстояния до вехи или штатива с отражателем. Эти первичные измерения служат основой для последующих, подчас сложных вычислений, производимых встроенным или внешним контроллером. Точность измерения определяют блоки или модули измерения углов, расстояний и модуль компенсатора.

Для соблюдения точности угловых измерений чрезвычайно важен диапазон компенсации влияния углов наклона вертикальной и горизонтальной осей. В настоящее время наибольший диапазон работы (± 6') . Эта величина особенно существенна при работе тахеометром со штатива. Дальномер тахеометра характеризуется не только точностью, но и дальностью. Как правило, это дальность измерения расстояний до одной призмы. Следует отметить, что эти характеристики связаны друг с другом.

Несмотря на то что значительная часть объема измерений тахеометром не превышает 500–1000 м, периодически приходится измерять значительно более длинные расстояния. Поэтому наилучшими сегодня являются дальномеры с точностью измерений не ниже 2 мм при дальности 3000–4000 м. Эти параметры должны стать стандартными в будущем для большинства тахеометров.
Увеличение дальности измерений в ущерб точности нецелесообразно и неэффективно.

В последнее время широкое распространение получили тахеометры с дальномером, позволяющим измерять расстояния непосредственно до объекта без отражателя. Как правило, дальность таких измерений не превышает 100–150 м, а точность лежит в пределах 10–20 мм. К недостаткам данных систем следует отнести зависимость точности измерений от свойств отражающей поверхности и отсутствие надежной фиксации точки измерения. Тем не менее следует ожидать дальнейшего их совершенствования.

Важной составляющей электронного тахеометра является модуль контроллера
— встроенного или внешнего. Под контроллером понимается не только полевой компьютер/вычислитель, но и пульт/клавиатура управления самим тахеометром.
От его производительности, объема памяти, типа экрана, наличия и числа встроенных программ зависят функциональные возможности тахеометра.
Большинство моделей тахеометров имеют встроенный контроллер, управляемый клавиатурой. Клавиатура может быть цифровой или алфавитно-цифровой.
Некоторые модели тахеометров имеют клавиатуры с обеих сторон. Число клавиш клавиатуры в среднем лежит в пределах от 10 до 30, в зависимости от возможностей тахеометра.

Программное обеспечение решает большинство CAD-задач непосредственно в поле, позволяют вести трехмерную базу съемочных данных, что дает возможность строить цифровую модель рельефа и отображать ее в виде горизонталей, строить разрезы, сечения, профили, решать задачи координатной геометрии и многие другие. Обмен с персональным компьютером, экспорт/импорт файлов в формате DXF обеспечивают эффективность разбивочных работ по заранее подготовленным проектам. Очевидно, что графические системы реального времени получат дальнейшее развитие и станут неотъемлемой частью полевых съемочных систем. Можно предположить также, что тахеометры с механическим приводом в будущем будут полностью заменены тахеометрами с сервоприводом.

К сожалению, сегодня в России значительная часть всех полевых съемочных работ выполняется традиционными средствами — оптическими теодолитами, дальномерными насадками и другими устаревшими геодезическими приборами.
Наиболее прогрессивные организации успешно внедряют в течение последних 5лет технологии с применением электронных тахеометров. По приблизительным оценкам, в настоящее время в России используется около 2–3 тыс. электронных тахеометров. Реальная же потребность в современных тахеометрах составляет сотни в год.

Недооценка руководителями различного уровня преимуществ от внедрения новых технологий, “затратные механизмы” финансирования многих видов работ, особенно строительных, общие экономические проблемы и достаточно высокая стоимость электронных тахеометров (от 10 до 25–35 тыс. дол.) не позволяют многим организациям перейти на современные цифровые технологии полевых работ. Тем не менее в случае развития в России реального рынка услуг в области геодезии, картографии и геоинформатики, компании, применяющие наиболее прогрессивные и эффективные технологии могут значительно потеснить компании, работающие по устаревшим технологиям.

степень автоматизации измерений - student2.ru Министерство образования РБ

Наши рекомендации