Определение требуемой точности измерений
Многократное измерение одной и той же величины постоянного размера позволяют обеспечить требуемую точность. Поскольку ширина доверительного интервала зависит от количества экспериментов, то увеличивая n можно добиться выполнения наперед заданного условия .
Пример
Имеется 10 независимых значений результата измерения линейного размера.
Определить длину с вероятностью 0,95. Точность измерения не ниже =2см.
… | … | ||
Решение
1.Используя вспомогательные вычисления получим: =392, =2,5
2.Больше чем на 3 =7,5 от среднего не отличается ни одно из значений. Следовательно ошибок нет.
3.Допустим есть основание полагать, что измерения подчиняются нормальному закону.
4.Стандартное отклонение среднего арифметического равно
5.При Р=0,95 по графику распределения Стьюдента находим t=2,3.
6.Так как , то необходимо увеличить количество экспериментальных данных.
7.Пусть =390, следовательно =391,8 и =2,48.
8.Для проверки нормальности закона распределения используем составной критерий: при и ни одно из численных значений не отличается от среднего больше чем на 2,5 . Т.о. результат проверки не противоречит гипотезе о нормальности.
9.Стандартное отклонение среднего арифметического
10. При , следовательно необходимо увеличивать количество экспериментальных данных. При таком задании .
На практике беспредельно повышать точность т.о. нельзя, т.к. рано или поздно определяющим становится не рассеяние расчета, а недостаток информации о поправках. Следовательно точность многократных измерений ограничивается дефицитом информации.
Многократное измерение с неравноточными значениями отсчета.
При многократном измерении с неравными значениями отсчета, подчиняющегося нормальному закону, функция правдоподобия может быть представлена в виде
где все значения отсчета, полученные например, с помощью разных средств измерения, являются независимыми.
Для оценки среднего значения результата измерения прологарифмируем эту функцию и, выполнив математические преобразование получим:
Это так называемое среднее взвешенное. В числителе отдельные значения результата измерения суммируются с «весами», обратно пропорциям их дисперсиям. Тем самым, более точным значениям придается больший вес.
Наличием суммы в знаменателе обеспечивается то, что в выражении
Сумма всех весов равна единице: , где нормированный вес каждого значения равен .
Математическое ожидание среднего взвешенного . Т.о. среднее взвешенное является несмещенной оценкой среднего значения результата измерения.