Теоретическое введение. Электростатическое поле создается неподвижными электрическими зарядами
Электростатическое поле создается неподвижными электрическими зарядами. Элементарным отрицательным электрическим зарядом является электрон е. Величины зарядов тел дискретны:
q = e N, |
где N – число избыточных или недостающих электронов всех атомов тела, е = - 1,6 · 10 -19 Кл – заряд электрона (m = 9,1 · 10-31 кг – масса электрона).
Характеристиками электронов и их поведением в электрических и магнитных полях объясняются многие явления и законы природы, принципы действия технических устройств и др.
Рассмотрим движение электронов в электростатических полях. На электрон в электростатическом поле с вектором напряженности E действует сила F, равная
(1) |
По второму закону Ньютона
Модуль ускорения электрона
(2) |
Траектория движения электрона и характер изменения его скорости зависят от угла между вектором скорости υ электрона и вектором напряженности E электростатического поля. Выделим два частных случая.
- или - электрон влетает в продольное электростатическое поле и движется в поле прямолинейно вдоль линий вектора напряженности E равнозамедленно или равноускоренно.
- - электрон влетает в поперечное электростатическое поле и далее в поле движется криволинейно.
При движении электрона в продольном электростатическом поле (см. рис. 1) начальная скорость электрона, вылетающего из катода K, обычно очень мала и её принимают равной нулю υ0 = 0. Электрон движется с ускорением a, определяемым формулой (1.2) прямолинейно к аноду A. Между катодом K и анодом A напряжение Uа является определяющим скорость движения электрона υ.
Рис. 1 |
Скорость, которую электрон приобретает при движении в поле, можно рассчитать по соотношению энергий:
Величины энергий определяются по формулам:
Отсюда скорость электрона, прошедшего ускоряющую разность потенциалов Uа, равна
(3) |
Если электрон влетает в однородное поперечное электростатическое поле, создаваемое плоским конденсатором, как показано на рис. 2, то движение происходит с ускорением направленным вдоль линий вектора
Рис. 2 |
Траектория движения электрона определяется уравнениями:
(4) |
где t – время движения электрона в поперечном электростатическом поле.
С учетом формулы (2) и получаем уравнение движения электрона:
(5) |
Полученное уравнение - это уравнение параболы. Таким образом, электрон в поперечном электростатическом поле движется по параболе. Подставив в уравнение (1.5) значение скорости (1.3), получаем величину смещения электрона Δy:
(6) |
Напряженность E электростатического поля плоского конденсатора связана с напряжением U и расстоянием d между обкладками конденсатора соотношением:
(7) |
Описание установки
Принципиальная схема экспериментальной установки для наблюдения движения электрона в продольном и поперечном электростатических полях показана на рис. 3.
В электронно-лучевой трубке впаяны катод K и анод A между которыми создается ускоряющее напряжение Ua. Напряжение может изменяться с помощью реостата Ra и измеряется вольтметром Va. Электроны, вылетающие из катода K, ускоряются электрическим полем и через малое отверстие в аноде A влетают по центральной линии в электростатическое поле плоского конденсатора.
Между пластинами конденсатора создается напряжение U, величина которого может изменяться с помощью реостата R и измеряется вольтметром V. Пластины конденсатора расположены так, что вектор напряженности E поля конденсатора перпендикулярен вектору скорости, влетающего электрона. На выходе из конденсатора электрон отклоняется от первоначального направления движения (от центральной линии) на величину Δy, что фиксируется на экране H.
Рис. 3 |
Рис. 4 |
На рис. 4 показана модель установки по изучению движения электронов в электростатических полях, позволяющая проводить виртуальные лабораторные исследования.