Задание 5. Обработка экспериментальных данных
При изучении зависимостей
Условие задания
При многократных совместных измерениях величин X и Y получено по 20 (n) пар результатов измерений. Эти результаты после внесения поправок представлены в таблице 4. Определить уравнение регрессии Y по X: Y = f (X).
Указания по выполнению
1. Серии экспериментальных данных студент выбирает из таблицы 4 по предпоследней и последней цифрам шифра. Например, шиф-
ру 96836 соответствуют серии, включающие все результаты измерений X (числитель) и Y (знаменатель), которые представлены в строке 3 и столбце 6.
2. Считать, что результаты измерений не содержат ошибок.
Порядок расчета
Обработку экспериментальных данных при изучении зависимостей целесообразно осуществлять по алгоритмам [4, с. 99-109].
1. В осях координат X и Y построить n экспериментальных точек с координатами Xi ,Yi, i Î (1…20) и по характеру расположения точек принять гипотезу о виде уравнения регрессии Y на X.
Таблица 4 – Исходные данные
Предпоследняя цифра шифра | Последняя цифра шифра | |||||||||
В качестве уравнения регрессии целесообразно использовать полином степени m:
Y = А + В∙Х + С∙Х2 + ... + К∙Хm.
В первом приближении для решения данной задачи рекомендуется принять m = 1, т.е.
Y = А + В∙Х.
2. Определить параметры уравнения регрессии по методу наименьших квадратов. Для этого необходимо:
– составить систему уравнений по числу рассчитываемых параметров:
; ; ; … ; ,
где .
Например, для линейного уравнения регрессии система уравнений имеет вид:
– решить систему уравнений и определить неизвестные параметры. Например, для линейного уравнения регрессии решение имеет вид:
.
3. Проверить правильность выбора вида уравнения регрессии. Для этого следует применить непараметрические критерии серий и инверсий:
– рассчитать отклонения экспериментальных значений Yi от соответствующих значений Ypi, рассчитанных для того же аргумента Xi по полученному уравнению регрессии:
DYi = Yi – Ypi;
– построить в осях координат X, DY полученные значения DYi для соответствующих Xi;
– записать последовательность значений DYj по мере возрастания Xj, Xj Î [l,n];
– рассчитать число серий N в полученной последовательности DYj (под серией в данном случае понимают последовательность отклонений одного знака, перед и после которой следуют отклонения противоположного знака или нет вообще никаких отклонений);
– задавшись доверительной вероятностью Р (уровень значимости a = 1 – Р) для n = 20 определить по соответствующей таблице (таблица А.6 [4] или таблица Ж.1) допустимые границы N1-0,5a и N0,5a;
– рассчитать число инверсий А в полученной последовательности DYj (под инверсией понимается событие, заключающееся в том, что DYj > DYjk при k > j):
,
где Aj – это число инверсий j-гo члена последовательности, т.е. число членов последовательности, которые, будучи расположенными в последовательности после j-го члена, имеют значение меньшее, чем DYj;
– задавшись доверительной вероятностью Р (уровень значимости a = 1 – Р) для n = 20 определить по соответствующей таблице (таблица А.7 [4] или таблица И.1) допустимые границы A1-0,5a и A0,5a;
– сравнить А с A1-0,5a и A0,5a.
Если выполняются неравенства
N1-0,5a < N £ N0,5a;
A1-0,5a < A £ A0,5a,
то с выбранной доверительной вероятностью Р можно считать, что отклонения экспериментальных значений Yi, от соответствующих значений Yрi найденного уравнения регрессии являются случайными, не содержат аддитивного, мультипликативного или колебатель-
ного трендов, т.е. рассчитанное уравнение регрессии достоверно описывает экспериментально исследуемую зависимость между величинами X и Y.
Если хотя бы одно из указанных выше неравенств не выполняется, то следует пересмотреть выбор вида уравнения регрессии. В частности, можно увеличить степень полинома m на единицу и повторить вычисления по описанному выше алгоритму. Например, для полинома второй степени:
Y = А + В∙Х + С∙Х2.
С целью определения параметров уравнения регрессии в данном случае необходимо решить систему уравнений: