Измерительные цепи термометров сопротивления. Температурная погрешность. Погрешности от тепловых потерь

В термометрах сопротивления может быть использована любая цепь, предназначенная для измерения сопротивления. Наибольшее распространение получила цепь неуравновешенного моста с магни­тоэлектрическим логометром в качестве указателя, а также цепь автоматически уравновешиваемого моста.

На рисунке 4.1 приведена схема неуравновешенного моста с логометром в качестве указателя (RУК1 и RУК2 — рамки логометра). Три плеча моста составлены манганиновыми сопротивлениями R1, R2 и R3. Четвертое плечо моста состоит из преобразователя термо­метра сопротивления RT сопротивления r линии, уравнительной (подгоночной) катушки RУР, сопротивления RК и сопротивления R0. Назначение последних трех сопротивлений следующее: сопротивле­ние R0 служит для подгонки нулевой точки шкалы (для уравнове­шивания моста при начальной температуре термометра); катушка RУР дополняет сопротивление проводов, соединяющих термометр с измерительной цепью, до значения, принятого при градуировке термометра и равного (для описываемых термометров) 5 ом. При монтаже термометра необходимо отмотать от катушки RУР столько проволоки, чтобы общее сопротивление катушки RУР и проводов до преобразователя было равно 5 ом.

Для подгонки сопротивления катушки RУР служит катушка RК, сопротивление которой равно значению сопротивления преобра­зователя, соответствующему определенной (помеченной красной чертой) отметке на шкале прибора. Замкнув накоротко преобразо­ватель термометра RT и включив RК, необходимо отматывать прово­локу с катушки RУР до тех пор, пока стрелка указателя не остано­вится на определенной отметке шкалы. После, этого сопротивление RК закорачивается (как это показано на рисунке 4.1) и в дальнейшей работе термометра не участвует. Часть сопротивления R5 выпол­няется из меди, что позволяет корректировать температурную погрешность логометра.

В автоматических мостах обычно применяют измерительную мостовую цепь, показанную на рисунке 4.2.

При каждом изменении температуры мост выходит из равнове­сия и на входе преобразователя недокомпенсации ПН появляется напряжение ΔU. Под воздействием этого напряжения, преобразо­ванного и усиленного преобразователем недокомпенсации, приходит в движение двигатель Д. Двигатель перемещает движок реохорда RР в новое положение, при котором мост опять придет в равно­весие, но уже при новом значении температуры. Таким образом, каждому значению температуры соответствует определенное поло­жение движка реохорда и связанного с ним указателя отсчетного устройства.

Наиболее существенной погрешностью термометров сопротив­ления является погрешность, обусловленная изменением сопротив­ления линии вследствие колебаний температуры окружающей среды. Сопротивление линии при больших расстояниях (до нескольких сотен метров) от преобразователя термометра до измерительного пульта может достигать 5 Ом, тогда как начальное сопротивление преобразователей термометров составляет 46 Ом (либо 53 или 100 Ом).

Допустим, что уравнительная катушка в цепи, показанной на рисунке 4.1, подогнана при температуре линии t1 и что температура линии изменилась до значения t2.

Сопротивление r2 линии при температуре t2 будет равно

Измерительные цепи термометров сопротивления. Температурная погрешность. Погрешности от тепловых потерь - student2.ru ,

где r2 — сопротивление линии (без сопротивления уравнительной катушки) при температуре t1.

Измерительные цепи термометров сопротивления. Температурная погрешность. Погрешности от тепловых потерь - student2.ru

       
 
Рисунок 4.1 Схема измерительной цепи неуравновешенного моста с логометром в качестве указателя
 
Рисунок 4.2 Принципиальная схема автоматически уравновешиваемого моста, в котором связь мостовой измерительной цепи с преобразователем термометра сопротивления осуществляется тремя проводами
 

Приращение сопротивления Δr линии от изменения температуры составит

Измерительные цепи термометров сопротивления. Температурная погрешность. Погрешности от тепловых потерь - student2.ru .

Отсюда получаем абсолютную погрешность Δt в показаниях тем­пературы:

Измерительные цепи термометров сопротивления. Температурная погрешность. Погрешности от тепловых потерь - student2.ru ,

где R0 — сопротивление преобразователя термометра при 0°С;

ΔRT=R0α — приращение сопротивления преобразователя при изменении измеряемой температуры на 1 град.

Так, например, при значениях t1=20°С; t2=50°С, R0=46 Oм (преобразователь платиновый, для которого α=3,94*10-3 1/град) в худшем случае, когда сопротивление медной (τ=234) линии равно 5 Oм (сопротивление уравнительной катушки равно нулю), погрешность измерения Δt = + 3,26°С.

Для уменьшения погрешности от колебаний температуры линии применяют так называемые многопроводные линии связи, когда к преобразователю сопротивления подводится больше двух про­водов.

Измерительная цепь с трехпроводной линией связи показана на рисунке 4.2. Как видно из рисунка, одна из вершин диагонали пи­тания перенесена непосредственно к преобразователю. Благодаря этому сопротивление одного из проводов 0,5 г суммируется с сопро­тивлением плеча R1, а сопротивление второго провода — с сопро­тивлением плеча преобразователя термометра RT, вследствие чего числитель выражения для тока в измерительной диагонали остается практически неизменным при колебаниях сопротив­ления проводов.

Такое включение преобразователя при работе измерительной цепи в равновесном режиме полностью устраняет погрешность от изменения сопротивления линии. При работе в иеравновесном ре­жиме возникнет только погрешность чувствительности, но она бу­дет значительно меньше погрешности нуля в случае двухпроводной линии.

Кроме погрешности от колебаний температуры линии, следует учитывать также погрешность Δti, от нагрева преобразователя тер­мометра протекающим по нему током. Для уменьшения этой по­грешности ток через термосопротивление следовало бы снижать до минимума. С другой стороны, желательно допустить возможно боль­ший рабочий ток, поскольку при этом повышается чувствительность мостовой цепи и оказывается возможным применить менее чувстви­тельный указатель.

На рисунке 4.3 приведена зависимость приращения температуры Δti проводникового термосопротивления термометра от нагрева током, на основании которой для допустимой погрешности Δti можно определить максимальное значение рабочего тока. Обычно в проводниковых термосопротивлениях термометров ток не превы­шает 10—15 ма.

В технических характеристиках полупроводниковых термосо­противлений, кроме максимально допустимой мощности рассеяния, приводится коэффициент рассеяния — мощность рассеяния, при которой нагрев термосопротивления изменяется на 1 град. Таким образом, считая температуру нагрева прямо пропорциональной мощности рассеяния, можно при известном значении термосо­противлений найти приемлемое значение рабочего тока для допустимого значения погрешности Δti.

Измерительные цепи термометров сопротивления. Температурная погрешность. Погрешности от тепловых потерь - student2.ru

Рисунок 4.3 зависимости прироста температуры Δti проводникового термосопротивления термометра от нагрева протекающим по нему током

Контрольные вопросы:

1. Дать определение термосопротивления.

2. Что относится к факторам, определяющим интенсивность теплообмена проводника со средой.

3. Какие основные требования предъявляют к материалам, применяемым для преобразователей термометров сопротивления.

4. Что называется корректированным термоэлементом.

5. Назовите преобразователи промышленных термометров сопротивления.

Наши рекомендации