Решение прямой геодезической задачи

Дано: XA, YA, AB, dAВ

Определить: XB, YB

Рис.11. Прямая и обратная геодезические задачи

Решение:

XB=XA+dAB. cos AB=XA+X,

YB=YA+dAB. sin AB=YA+Y,

где X и Y - приращения координат, т.е. проекции горизонтального проложения на соответствующие оси координат.

Контроль вычислений координат выполняют по формуле

2) Механический способ основан на применении специального прибора -полярного планиметра, который состоит из полюсного и обводного рычагов и счетного механизма. Перед измерением площади контура вычисляют цену деления планиметра с - площадь, соответствующую одному делению планиметра. Для этого на карте обводят планиметром один квадрат километровой сетки с известной площадью Ризв.= 100 га. Отсчеты по счетному механизму берут до обводки n1 и после обводки n2, вычисляют их разность U, которую уточняют несколько раз.

Например, n1 = 3546, n2 = 4547. Тогда цена деления планиметра с = Ризв./U = 100/1001=0.09990 га.

Площадь заданного контура сначала получают в результате обводки в делениях планиметра МU, а затем, используя цену деления с, - в гектарах Р = с . U. Контроль полученных результатов выполнятся повторными измерениями и вычислениями цены деления планиметра и определяемой площади. Относительная погрешность измерений площади планиметром составляет порядка 1/300. При механическом способе применяют планиметры различных конструкций, чаще всего - полярный планиметр. Он состоит из трех основных частей: двух рычагов – полюсного и обводного и каретки со счетным механизмом. Полюсный рычаг на одном конце имеет грузик с иглой. Иглу перед обводкой контура вкалывают в бумагу. Она является осью вращения планиметра и поэтому называется полюсом. На другом конце полюсного рычага жестко прикреплен стержень с шариком на конце. При помощи этого стержня и гнезда в каретке счетного механизма полюсный и обводной рычаги шарнирно соединяются перед работой. На конце обводного рычага расположен обводной шпиль или обводное стекло с точкой.

Решение обратной геодезической задачи

Обратная геодезическая задача

Обратная геодезическая задача заключается в том, что при известных координатах точек А( XA, YA ) и В( XB, YB ) необходимо найти длину SAB и направление линии АВ: румб rAB и дирекционный угол αAB (рис.24).

Решение прямой геодезической задачи - student2.ru

Рис. 24. Обратная геодезическая задача

Даннная задача решается следующим образом.

Сначала находим приращения координат:

ΔX = XB – XA ;

ΔY = YB – YA .

Величину угла rAB определем из отношения

ΔY

___ = tg rAB

ΔX

По знакам приращений координат вычисляют четверть, в которой располагается румб, и его название. Используя зависимость между дирекционными углами и румбами, находим αAB.

Для контроля расстояние SAB дважды вычисляют по формулам:

SAB= ΔX = ΔY = ΔX · sec αAB = ΔY · cosec αAB

cos αAB sin αAB

SAB= ΔX = ΔY = ΔX · sec rAB = ΔY · cosec rAB

cos rAB sin rAB

Расстояние SAB можно определить также по формуле

Sав=(dx*2+dy*2)*0.5

Решение прямой геодезической задачи выполнятеся при помощи следующих формул:

dx = S1-2*cos α1-2

dy = S1-2*sin α1-2

X2 = X1 + dx

Y2 = Y1 + dy Инфо

Исходными данными для решения обратной геодезической задачи (определение расстояния между точками и дирекционного угла направления 1-2) являются координаты точек 1 и 2. Инфо

Решение обратной геодезической задачи выполняется при помощи следующи формул:

α1-2 = arctg(dy/dx), где dy = Y2 - Y1, а dx = X2 – X1

S1-2 = √( dx2 + dy2)

Правильность вычисления дирекционного угла можно проконтролировать начертив схему с взаимным отображением точек 1 и 2. Если вычисленный по формуле угол не соответсвует схеме, то к полученному значению угла следует прибавить или отнять 180 градусов.

20. (17.1.)

Для определения площади земельных участков существуют различные способы. Применение того или иного способа зависит от наличия планово-картографического материала, значимости и размеров участка, условий местности, цены на землю и требуемой точности.

Способы вычисления площадей:

▪ геометрические,

▪ механические,

▪ по координатам.

Геометрические способы используются в тех случаях, когда известны результаты измерения геометрических элементов участка – длины ее линий и величины углов или функций элементов, которыми являются координаты вершин земельного участка.

Механические способы применяются для определения площадей по топографическим планам с помощью механических приборов – планиметров, а также с помощью палеток, представляющих собой прозрачную основу с нанесенной сеткой равных по площади фигур; сторона сетки квадратов обычно составляет 2…10 мм. Палетку кладут на план и внутри контура фигуры подсчитывают число n целых квадратов и число квадратов n1, которые составлены на глаз из частей, рассеченных контуром. Площадь участка определяют по формуле :

Р=р(n-n1), р – площадь одного квадрата в масштабе плана.

Погрешность определения площади палеткой – 0,5…2,0%.

СпособПо координатам применяют тогда, когда известны координаты вершин замкнутого теодолитного хода , представляющего многоугольник, вершины которого закреплены геодезическими знаками.

Наши рекомендации