Определение приборной погрешности и общей погрешности в случае прямого измерения
Приборные погрешности, являющиеся одним из видов систематических погрешностей, принципиально неустранимы и должны быть учтены при окончательной записи результата измерения.
В зависимости от величины погрешности измерительные приборы подразделяются на восемь классов точности (ГОСТ 8.401-81): 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4. Классом точности прибора называется отношение абсолютной максимальной погрешности прибора (Dxпр) к верхнему пределу его измерения (xmax), выраженное в процентах
(4.1)
Приборы класса 0,05; 0,1; 0,2; 0,5 используются для точных измерений и называются прецизионными. В технике применяются также приборы классов 1,0; 1,5; 2,5; 4. Более грубые приборы обозначения класса точности не имеют. Класс точности прибора обычно указывается на его шкале и в паспортных данных.
Зная класс точности, можно легко определить максимальную приборную погрешность, возникавшую при измерениях данным прибором.
(4.2)
Завод-изготовитель с помощью класса точности гарантирует лишь верхний предел приборной погрешности, т.е. её максимальное значение. Это значение Dxпр экспериментатор вынужден считать постоянным при измерениях по всей шкале; конкретная же величина погрешности данного прибора, как правило, неизвестна.
Итак, приборная погрешность одинакова для всех значений измеряемой величины от начала до конца шкалы прибора. Однако относительная погрешность при измерении в начале шкалы будет значительно больше, чем в конце шкалы. По этой причине при эксплуатации многодиапазонных стрелочных приборов (например, в нашем практикуме по электричеству и магнетизму – амперметров и вольтметров) рекомендуется выбирать предел измерения прибора так, чтобы стрелка отклонялась почти на всю шкалу.
Если для прибора или инструмента отсутствуют данные о его классе точности, то максимальную приборную погрешность следует принять равной цене наименьшего деления шкалы этого прибора. Указанное правило связано с тем, что градуировка приборов обычно производится так, чтобы одно деление шкалы содержало от половины до целого значения величины Dxпр. Так, приборную ошибку линейки с миллиметровыми делениями следует считать равной 1 мм, приборная ошибка секундомера, деления которого нанесены через 0,2 с, составит 0,2 с и т.д. (Следует оговориться, что в некоторых случаях даются рекомендации принимать в качестве максимальной приборной погрешности половину цены деления).
В том случае, если погрешность измерения какой-либо величины складывается из нескольких погрешностей (Dx1, Dx2 , ..., Dxm), вносимых разными независимыми причинами, то теория погрешностей дает следующий закон их сложения (правило «накопления ошибок»):
(4.3)
Общая погрешность прямого измерения состоит из случайной и приборной погрешностей. Поскольку доверительные вероятности этих ошибок могут различаться, при расчете результирующей (суммарной) погрешности Dx следует учесть данное различие. Как следует из вышеизложенного, приборная погрешность имеет высокую доверительную вероятность, приближающуюся к единице. Истинный же закон распределения приборных ошибок в партии приборов данного типа неизвестен. Один из возможных способов оценки суммарной погрешности в этом случае заключается в следующем. Полагают, что закон распределения приборных погрешностей близок к нормальному. Тогда величина Dxпр примерно соответствует "трёхсигмовому" интервалу. Доверительный интервал для используемой нами надёжности результата 0,95 равен "двухсигмовому", т.е. он составляет величину 2·Dxпр / 3. Воспользовавшись правилом «накопления ошибок» (4.3), найдём общую погрешность прямого измерения в виде
(4.4)
Следует иметь в виду, что складывать приборную и случайную погрешности по формуле (4.4) имеет смысл лишь в том случае, если они различаются меньше чем в три раза. Если же одна из погрешностей больше другой в три и более раз, именно её и следует принять в качестве меры общей погрешности. Экспериментатор должен стремиться к тому, чтобы случайная погрешность была меньше приборной и не вносила вклад в общую погрешность.Однако на практике не всегда удаётся провести достаточно большое число измерений и приходится пользоваться правилом сложения (4.4).
РАСЧЕТ ПОГРЕШНОСТЕЙ ДЛЯ СЛУЧАЯ
КОСВЕННЫХИЗМЕРЕНИЙ
При проведении научно-технических исследований в большинстве случаев искомую физическую величину не удаётся измерить непосредственно, а приходится рассчитывать по формулам, в которые в качестве одной или нескольких переменных входят величины, измеряемые с помощью приборов. Такие измерения, как уже отмечалось, называются косвенными. Рассмотрим методику расчёта погрешностей для случая косвенных измерений.
Допустим, необходимо определить некоторую физическую величину f, которая связана функциональной зависимостью с величинами u, v, w,… .
f = f(u, v, w,…) (5.1)
Величины u, v, w,… измеряются непосредственно с помощью приборов. Пусть было проведено по п измерений каждой из величин u, v, w,… и получены следующие результаты:
u1, u2,…,un
v1, v2,…,vn (5.2)
w1, w2,…, wn
Результаты прямых измерений (5.2) были обработаны согласно правилам, изложенным в разделе 3 и 4, и определены средние значения и соответствующие им погрешности:
; ; . (5.3)
Наилучшей оценкой истинного значения искомой величины f является её среднее значение . Для нахождения необходимо в формулу (5.1) подставить средние значения прямо измеренных величин:
= f( ) (5.4)
Очевидно, что величина получена с некоторой погрешностью . Погрешность при косвенном измерении зависит от погрешностей прямо измеренных величин и вида функциональной зависимости (5.1).
Если прямые измерения проведены независимыми способами и относительные погрешности ε(u), ε(v), ε(w),... невелики, то теория погрешностей даёт следующую формулу для нахождения погрешности:
, (5.5)
где , , ,.... - частные производные от функции (5.1), которые вычисляются при , , ,... .
Пусть зависимость (5.1) имеет степенной вид
, (5.6)
где А - некоторая константа; α, β, γ показатели степени (целые или дробные, положительные или отрицательные). В этом случае для расчета ∆f удобнее использовать формулу
(5.7)
Поясним, как получается формула (5.7). Для этого предварительно прологарифмируем уравнение (5.6)
ln f = ln A + α ln u + β ln v + γ ln w (5.8)
Известно, что , отсюда получаем
(5.9)
Вычислив частную производную и подставив её в (5.9), получим
(5.10)
Далее, заменяя в (5.5) частные производные выражениями вида (5.10), придем к формуле (5.7).
Рассмотрим два примера. 1. Дана функция .
Пусть средние значения и погрешности прямо измеренных величин и, v и w равны, соответственно, , , , ∆u, ∆v и ∆w. Найдем формулу для расчета погрешности ∆f.
Для нахождения ∆f применим правило (5.7), предварительно вычислив частные производные функции f:
; ;
2. Пусть функция f имеет другой вид: . В этом случае, используя правило (5.7), запишем:
;