Эксплуатация контрольно-измерительных приборов и автоматики

Эксплуатация контрольно-измерительных приборов и автоматики

Учебный элемент. Назначение, устройство, принцип работы КИПиА

Цель курса – после прохождения курса Вы будете знать назначение, устройство, принцип работы КИПиА
Общие характеристики КИП и А

Классификация измерений

В нефтедобыче необходимо измерять и контролировать следующие параметры:

· давление;

· расходжидкости (нефти, газа, воды);

· количество (уровень) жидкости (нефти, газа, воды);

· температуру (как рабочих веществ, так и отдельных частей и узлов машин и аппаратов);

· плотностьжидкости (нефти, воды);

· содержание солей, различных мех.примесей и воды в нефти.

Все измерения по общим приемам получения результатов классифицируются как прямые (непосредственные) и косвенные.

При прямом измерении искомое значение величины получают непосредственно. Например, измерение температуры воздуха термометром, давления – манометром.

При косвенное измерении значение физической величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой. Например. Нахождение плотности тела по его массе и геометрическим размерам.

Система единиц физических величин – совокупность основных и производных единиц, использованная в соответствии с принятыми принципами для заданной системы. Для обеспечения единства измерений большое значение имеет унификация единиц физических величин.

В нашей стране используется Международная система единиц (Sl). Наряду с этим допускается применение ограниченной совокупности внесистемных единиц.

Международная система единиц (Cи) принята в октябре 1960 года 11 Генеральной конференцией по мерам и весам.

Основные единицы физических величин: метр равен длине пути, света проходимого в вакууме за 1/299792458 долю секунды; килограмм; секунда; ампер; Кельвин; Моль; Канделла. Дополнительные единицы Си: радиан, стерадиан.

Важнейшими характеристиками измерения является погрешность и точность.

Погрешность результата измерений – отклонение результата измерения от истинного значения измеряемой величины.

Точность результата измерений – характеристика качества измерения, отражающая ближайшую к нулю погрешности его результата (чем меньше погрешность измерения, тем больше точность).

Погрешности бывают:

· систематические (инструментальные, методические). Возникают в результате некорректной настройки приборов или при применении недостаточно точных методик измерения;

· случайные. Случайные погрешности возникают в результате неконтролируемых внешних условий;

· грубые. Грубые погрешности возникают в результате ошибок при определении величины по шкале прибора или неправильной записи.

Измерение физических величин веществ, предметов и явлений, параметров, технологических процессов производится с помощью измерительных приборов и мер.

Средства измерений

Средство измерений – это техническое средство (или комплекс технических средств), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее или хранящее одну или несколько единиц физических величин, размеры которых принимаются неизменными в течение известного промежутка времени.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне. Как правило, измерительный прибор имеет устройства для преобразования измеряемой величины в сигнал измерительной информации и его индикации в форме, наиболее доступной для восприятия. Устройства для индикации часто содержат шкалу со стрелкой или другим указателем, диаграмму с пером и цифроуказатель, благодаря чему можно отсчитывать показания или регистрировать значения физической величины. В случае сопряжения прибора с компьютером отсчет проводится с дисплея.

Диапазон измерений определяется нормативно-техническим документом (паспортом завода-изготовителя), в соответствии, с которым изготавливается тот или иной прибор. Для каждого типа прибора устанавливается свой диапазон измерений.

Различают следующие типы приборов: показывающие, регистрирующие, суммирующие, самого действия, сравнения.

Класс точности – обобщенная характеристика СИ, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами СИ, влияющими на его точность. Класс точности задается любым числом из размерного ряда: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0) · 10n, где n = 1; 0; - 1; - 2.

Пример. Ртутный термометр с двухсторонней шкалой - 50 оС - +50 оС имеет класс точности 1.

Определим пределы абсолютной погрешности показаний:

 
Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru 1 · (½- 50 ½ + 50) оСоС

100

Погрешность средства измерений - разность между показаниями СИ и истинным (действительным) значением измеряемой величины.

Все средства измерений делятся, в зависимости от назначения и класса точности, на рабочие и образцовые.

Образцовые средства измерений (ОСИ) – средство измерений, предназначенное или применяемое для поверки (калибровки) средств измерений. Образцовые средства измерений в зависимости от точности подразделяются на разряды 1-й, 2-й и 3-й.

Поверка средств измерений – совокупность операций, выполняемых органами государственной метрологической службы (другими уполномоченными на то органами, организациями), с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

Поверка распространяется на средства измерений, подлежащие государственному метрологическому контролю, перечень этих средств измерений на предприятии утверждается главным инженером, все остальные средства измерений, не вошедшие в этот перечень, подлежат ведомственному метрологическому контролю и подвергаются калибровке метрологическими службами предприятий.

Калибровка средств измерений – совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодностью к применению средства измерений, не подлежащих государственному метрологическому контролю и надзору.

 
Показывающие измерительные приборы (СИ) в большинстве случаев имеют шкалу, нанесенную на циферблате. На циферблате измерительного прибора указана необходимая информация о приборе: тип прибора, единицы измеряемой величины, класс точности, верхний предел измерения шкалы, способ расположения прибора в пространстве и др. информация. На измерительных приборах. Не имеющих циферблата или шкалы, эта информация может быть нанесена на корпусе прибора, в других случаях эту информацию можно получить из паспорта на СИ.

Выбор средства измерений

Основными характеристиками средств измерений являются погрешности. Они наиболее существенно влияют на качество измерений, поэтому при выборе средств измерений по точности необходимо учитывать требования к погрешности результата измерения и долю ее, приходящуюся на погрешность используемых средств измерений.

В технологическом регламенте должно быть указано допустимое отклонение контролируемого параметра в единицах измеряемой величины или в процентах. При выборе измерительного прибора необходимо определить допускаемую погрешность измерения в контролируемом диапазоне и сравнить ее с допустимым отклонением, указанным в технологическом регламенте. Если погрешность прибора в указном диапазоне меньше указанного отклонения в регламенте, значит прибор выбран правильно. При обратном результате необходимо подобрать прибор с диапазоном измерения более близким к контролируемому диапазону, и вновь провести расчет погрешности.

Классификация приборов

Одним из основных параметров, характеризующих работу нефтяных скважин, насосных агрегатов, сепарационных установок, установок по подготовке нефти, газа и воды является давление.

Давлением называют отношение силы, действующей перпендикулярно поверхности, к площади этой поверхности. Различают следующие виды давления: атмосферное, абсолютное, избыточное и вакуум (разряжение).

Атмосферное (барометрическое) – давление, создаваемое массой воздушного столба земной атмосферы.

Абсолютное – давление, отсчитанное от абсолютного нуля. За начало отсчета абсолютного давления принимают давление внутри сосуда, из которого полностью откачан воздух.

Избыточное давление – разность между абсолютным и барометрическим давлениями.

Вакуум (разряжение) – разность между абсолютным и барометрическим давлениями.

В Международной системе единиц за единицу давления принят Паскаль (Па) – давление, создаваемое силой в 1 ньютон (Н), равномерно распределенной по поверхности площадью 1 м2, направленной перпендикулярно к ней. Внесистемная единица измерения давления – кгс/см2, мм вод. Ст., мм рт. Ст. (1– кгс/см2 = 9.8 × 104 Па)

Приборы для измерения давления можно разделить на следующие группы:

1. По роду измеряемой величины:

· манометры – служат для измерения избыточного давления. При помощи манометров измеряют давление в нефтепроводах, газовых линиях, водоводах, ЗУ, котельных установках, на ДНС, УПСВ, компрессорных и т.д.;

· барометры – предназначены для измерения атмосферного давления;

· тягомеры и напоромеры – для измерения небольших разряжений или избыточных давлений до 2500 мм вод. ст. Тягомеры широко используются для измерения тяги в печах, у основания дымовых труб, а напоромеры – при измерении небольших давлений воздуха и газа в воздухо- и газопроводах;

· вакуумметры – используются для измерения разряжения (вакуума) до 760 мм рт. ст. Применяются в конденсаторах, вакуум-насосных установках, вакуум-аппаратах;

· мановакууметры – для измерения избыточных давлений от 0,5 до 50 кгс/см2 и вакуума до 760 мм рт. ст.;

· дифференциальные манометры – для измерения разности давлений.

2. По принципу действия:

· Жидкостные – измеряемое давление уравновешивается давлением столба жидкости, заливаемой в прибор, высота которого и является величиной, определяющей давление.

· Пружинные – измеряемое давление уравновешивается упругими силами пружинных элементов (трубчатой пружины, мембраны, сильфона и др.) – величиной, определяющей давление.

· Поршневые – измеряемое давление уравновешивается весом груза, действующего на поршень определенной площади, перемещающийся в цилиндре, заполненном маслом.

· Электрические – используют для измерения давления различные электрические явления, связанные с изменением давления (пьезоэлектричество, изменение сопротивления проводников, емкости и др.).

· Комбинированные– основанные на использовании нескольких принципов.

3. По способу выдачи сигналов измерения:

· показывающие;

· регистрирующие с местной записью;

· регистрирующие с дистанционной передачей показаний.

4. По назначению:

· Технические – служат для установки на объектах.

· Контрольные – предназначены для проверки технических приборов на месте их установки.

· Образцовые – используются для проверки технических и контрольных приборов, а также для точных измерений.

Манометры.

Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru В нефтедобыче наиболее распространены пружинные манометры (рис.1.), где в качестве чувствительного элемента применяют трубчатые пружины, как одновинтовые, так и многовинтовые, мембраны и сильфоны.

Технические манометры имеют класс точности 1,5; 2,5; 4,0; контрольные – 0,6; 1,0; образцовые – 0,16; 0,25; 0,4.

Верхние пределы измерений манометров в зависимости от их типов составляют: 0,16; 1,0; 1,6; 2,5; 4,0; 6; 10; 16; 25; 40; 60; 100; 160; 250; 400; 600; 1000 кгс/см2.

Пример обозначения манометра:

манометр показывающий (МП) с диаметром корпуса 63 мм (63), радиальным штуцером (Р), диапазоном измерения от 0 до 4 МПа, классом точности 2,5

МП 63 - Р (0...4) МПа - 2,5.

Принцип действия манометра основан на уравновешивании силы, возникающей под воздействием измеряемого давления, силой упругости, чувствительного элемента прибора.

Манометр (см. рис.2.) имеет резьбовой штуцер 7 для подключения, трубчатую пружину 5,

Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru соединенную со штуцером, стрелку 1 и кинематический узел, состоящий из поводка 6, зубчатого сектора 4 и зубчатой шестерни 2, закрепленной со стрелкой, и противодействующей спиральной пружины. Под воздействием избыточного измеряемого давления трубчатая пружина деформируется (в пределах упругих деформаций), стремясь распрямиться. При этом свободный конец пружины, перемещаясь совместно с поводком 6, разворачивается. При этом свободный конец пружины, перемещаясь совместно с поводком 6, разворачивает относительно оси зубчатый сектор, который, в свою очередь, поворачивает на определенный угол зубчатую шестеренку 2 и стрелку прибора.

Трубчатая пружина 5 в сечении имеет эллипсовидную или овальную форму, которая под воздействием измеряемого давления газа или жидкости стремится к окружности. В металле возникают механические напряжения, приводящие к деформации пружины, и сечение трубки будет стремиться к окружности.

При подаче на вход манометра избыточного давления трубка разжимается, а при подаче разряжения – сжимается.

Технические характеристики манометров МП представлены в табл.1.

Таблица 1.

Диаметр корпуса D: 40, 50, 63 и 100 мм. Класс точности: · 2,5 и 4 для МП-40, 50 и 63; · 1,5 и 2,5 для МП-63 и 100.
Диапазон измерения: МП-40 и 50: · от -0,1 МПа до 0; · от 0 до 0,25... 25 МПа; МП-63: · от -0,1 до 0...1,5 МПа; · от 0 до 0,1... 25 МПа; МП-100: · от -0,1 до 0...2,4 МПа; · от 0 до 0,06... 25 МПа.   Исполнение: · корпус: для МП-40, 50, 63 и 100 - синтетическая масса (ABS или полистирол); для МП 100 - также может применяться сталь, окрашенная в черный цвет; · стекло - органическое для МП40, 50, 63 и 100; техническое для МП 100; · шкала - алюминиевый сплав, окрашенный в белый цвет, или полистирол; · трубчатая пружина - медный сплав; · штуцер - медный сплав; · трибко-секторный механизм - медный или алюминиевый сплавы, синтетические массы. Исполнение корпуса с радиальным расположением штуцера (Р) или с центрально-осевым расположением штуцера на задней стенке корпуса (Т) (кроме МП100).

Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru В зависимости от измеряемых параметров и внешних факторов применяются различные типы манометров. Широкое применение для контроля заданных параметров работы оборудования получили электроконтактные манометры (ЭКМ).

В отличие от обычного показывающего манометра в этом приборе имеются два электроконтакта, которые замыкаются при заданных значениях давления, передавая при этом по проводам соответствующий сигнал. Пределы, при которых подаются сигналы, устанавливаются перемещением контактных стрелок с помощью двух головок, выведенных наружу через стекло и помещенных над осью вращения стрелки прибора.

Электрическая часть контактных манометров может питаться постоянным или переменным током.

В целях безопасности корпус контактного манометра имеет особую клемму, которая должна быть соединена с землей.

Технические характеристики манометров ЭКМ представлены в табл.2.

Таблица 2.

Манометр ДМ2005Cг1Ех
Исполнение: взрывозащищенное
Диапазон показаний, кгс/кв.см: от 0 до 1600
Рабочая среда: газ, пар, жидкость
Класс точности: 1,5
Диапазон температур, °С: от -50 до +60
Параметры сигнализирующего устройства:
Напряжение внешних коммутируемых цепей, не более, В: · постоянного тока: 220 · переменного тока: 380
Отклонение напряжения от номинала, %: от +10 до -15
Коммутируемый ток, не более, А:
Разрывная мощность контактов, не более со скользящими контактами: -постоянного тока, Вт: 10 - переменного тока, ВА: 20 с магнитным поджатием контактов: -постоянного тока, Вт: 30 - переменного тока, ВА: 50
Число срабатываний сигнализирующего устройства: 200 000
Предел допускаемой основной погрешности срабатывания сигнализирующего устройства, %: · скользящий контакт: ±2,5 · с магнитным поджатием: ±6
Исполнение сигнализирующего устройства по подключению внешних цепей: · Исполнение VI (базовое): Два контакта, один замыкающий, другой размыкающий (указатели красного цвета) · Исполнение III: Два размыкающих контакта (левый указатель синий, правый - красный) · Исполнение IV: Два замыкающих контакта (левый указатель красный, правый - синий) · Исполнение V: Два контакта, один размыкающий, другой замыкающий (указатели синего цвета)
Корпус: герметичный, стальной или из сплава алюминия
Диаметр корпуса, мм:
Масса, кг: 5,5

На шкалах манометров, устанавливаемых на различном оборудовании, работающем под давлением, наносятся отметки, соответствующие максимальному (иногда и минимальному) рабочему давлению. Отметки могут быть выполнены в виде стрелок или рисок, которые крепятся к корпусу манометра напротив его шкалы.

Манометр не допускается к применению в случаях, когда:

· отсутствует пломба или клеймо на манометре;

· просрочен срок поверки манометра;

· стрелка манометра при его выключении не возвращается на нулевую отметку шкалы;

· Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru разбито стекло или имеются другие повреждения, которые могут отразиться на правильности его показаний.

Вакуумметры.

Устройство вакуумметра аналогично устройству манометра. Различие заключается в меньшей упругости пружины. При разрежении пружина скручивается, и стрелка вакуумметра движется против часовой стрелки. На шкале вакуумметра нулевая отметка справа.

Мановакуумметры предназначены для измерения переменных давлений, которые могут быть больше или меньше атмосферного. На шкале мановакуумметра – нуль в средней части. Делениям шкалы вправо от нуля соответствуют единицы давления, деления шкалы влево от нуля указывают разрежение.

Приборы для измерения температуры

Основные типы термометров

В процессах, имеющих место на нефтедобывающих предприятиях, важно знать температуры веществ, участвующих в той или иной технологии.

Приборы для измерения температуры по принципу действия подразделяются на:

· термометры расширения (технические стеклянные, манометрические, дилатометрические, биметаллические);

· термоэлектрические пирометры (термопары);

· термометры сопротивления.

Термометры расширения

Термометры расширения бывают:

· жидкостно-стеклянные термометры представляют собой стеклянную трубку, внутри которой проходит капилляр, заканчивающийся книзу резервуаром, заполненным жидкостью (спирт, ртуть). При изменении температуры рабочая жидкость, расширяясь в резервуаре, поднимается по капилляру вверх тем выше, чем выше измеряемая температура;

· манометрические термометры (рис. 4) – представляют собой замкнутую систему, в которую входят: термобаллон, погружаемый в измеряемую среду, капилляр, упругая манометрическая пружина, рычажная система. При погружении термобаллона в измеряемую среду увеличивается (или уменьшается) давление в замкнутой системе, что вызывает деформацию манометрической пружины;

· дилатометрические термометры – принцип действия основан на различии коэффициентов линейного расширения металлов и сплавов. Состоит из инварного стержня, латунной трубки и показывающей стрелки;

· биметаллические термометры (рис. 5) – принцип действия, так же, как и у дилатометрических, основан на различии коэффициентов линейного расширения металлов.

 
  Эксплуатация контрольно-измерительных приборов и автоматики - student2.ru

Термометры сопротивления

Принцип действия термометра сопротивления (ТС) основан на свойстве металлов изменять свое электрическое сопротивление при изменении температуры. ТС – это чувствительный элемент (проводник или полупроводник), зависимость которого от температуры известна. Зная эту зависимость, можно помещая термометр в среду с неизвестной температурой и замеряя его сопротивление, определить температуру среды. Сопротивление термометра измеряется вторичными приборами типа догометр и уравновешенный мост. Основной деталью ТС является каркас, на который наматывается проволока чувствительного элемента.

Классификация уровнемеров

По принципу действия приборы для измерения уровня классифицируются как:

· визуальные;

· поплавковые;

· гидростатические.

Визуальные уровнемеры – стеклянная трубка со шкалой, закрепленная между двумя штуцерами, соединенными с резервуаром.

Поплавковые уровнемеры – чувствительным элементом является поплавок, плавающий на поверхности жидкости. С изменением уровня изменяется положение поплавка, которое передается механическим (УДУ – 10), электрическим (Сапфир – ДУ, ВК - 1200) или пневматическим (УБ –ПВ) путем на вторичный прибор.

Гидростатические уровнемеры – принцип действия основан на измерении давления внутри жидкости, определяемого массой столба жидкости, расположенного между точкой измерения и поверхностью жидкости в емкости.

Для агрессивных жидкостей чувствительный элемент прибора отделяют потоком сжатого воздуха, который подают в соединительную линию (пьезометрические трубки). Измерительным прибором могут быть как манометры, так и уровнемеры (минусовая камера соединяется с атмосферой).

В емкости под давлением уровень измеряют уровнемерами. Отборы устанавливают вверху и внизу емкости. Современным представителем этой группы являются преобразователи уровня Сапфир 22 – ДГ.

Для измерения уровня жидкости с переменой плотностью и уровня сыпучих материалов применяют емкостные уровнемеры, действие которых основано на изменении емкости электродной системы при изменении уровня. В сосуд, в котором измеряют уровень, погружают изолированный электрод. Измерительный прибор измеряет емкость конденсатора, обкладками которого являются изолированный электрод и корпус сосуда (земля). При изменении уровня изменяется емкость конденсатора, т.к. изменяется диэлектрическая проницаемость среды между обкладками. Если электрод расположить горизонтально, то измерение будет происходить резко (скачком), т.к. жидкость достигает электрода одновременно по всей поверхности. Пример таких уровнемеров являются уровнемеры ДУЕ и сигнализаторы уровня РОС – 101.

Прочие уровнемеры радиоактивные, ультразвуковые – уровень вычисляется по измеряемому времени распространения ультразвуковой волны от излучателя до подвижного приемника колебаний (положением которого определяется уровнем) и времени распространения УЗВ от излучателя до опорного приемника колебаний.

Эксплуатация контрольно-измерительных приборов и автоматики

Наши рекомендации