Уровень статистической значимости – это
а) вероятность ошибки при принятии истинной и отклонении ложной гипотез;
б) мощность критерия;
в) точность принятия истинной и отклонении ложной гипотезы;
Сопоставляя показатели, измеренный в обычных и воображаемых условиях, получаем
а) умозрительный сдвиг;
б) временной сдвиг;
в) структурный сдвиг;
г) ситуационный сдвиг.
Нулевая гипотеза – это гипотеза
а) об отсутствии различий;
б) о наличии различий;
в) о наличии взаимосвязи
Статистический критерий – это
а) решающее правило, обеспечивающее принятие истинной гипотезы;
б) решающее правило, обеспечивающее принятие истинной и отклонение ложной гипотезы;
в) решающее правило, обеспечивающее отклонение ложной гипотезы;
34. Оценить сдвиг в значениях исследуемого признака позволяет критерий:
а) Стьюдента;
б) коэффициент линейной корреляции Пирсона;
в) критерий Колмогорова-Смирнова;
Выявить различия в уровне исследуемого признака в трех и более выборках позволяет критерий
а) Стьюдента;
б) Манна - Уитни;
в) Джонкира;
Теоретические вопросы:
Шкалы измерений.
Измерение - это приписывание числовых форм объектам или событиям в соответствии с определенными правилами. С.Стивенсом предложена классификация из 4 типов шкал измерения:
1) номинативная, или номинальная, или шкала наименований;
2) порядковая, или ординальная, шкала;
3) интервальная, или шкала равных интервалов;
4) шкала равных отношений
Номинативная шкала(неметрическая) - это шкала, в которой объекты группируются по различным классам так, чтобы чтобы внутри класса они были идентичны по измеряемому свойству; шкала, классифицирующая по названию. Название же не измеряется количественно, оно лишь позволяет отличить один объект от другого или одного субъекта от другого. Номинативная шкала - это способ классификации объектов или субъектов, распределения их по ячейкам классификации. Простейший случай номинативной шкалы - дихотомическая шкала, состоящая всего лишь из двух ячеек, например: "имеет братьев и сестер - единственный ребенок в семье" и т.п. Более сложный вариант номинативной шкалы - классификация из трех и более ячеек, например: "выбор кандидатуры А - кандидатуры Б -кандидатуры В - кандидатуры Г" или "старший - средний - младший -единственный ребенок в семье" и др.
Расклассифицировав все объекты, реакции или всех испытуемых по ячейкам классификации, мы получаем возможность от наименований перейти к числам, подсчитав количество наблюдений в каждой из ячеек. Теперь мы можем оперировать этими числами, представляющими собой частоты встречаемости разных наименований. Далее мы можем сопоставить полученное распределение частот с равномерным или каким-то иным распределением. Таким образом, номинативная шкала позволяет нам подсчитывать частоты встречаемости разных "наименований", или значений признака, и затем работать с этими частотами с помощью математических методов.
Ранговая или порядковая шкала(неметрическая) - это шкала, классифицирующая по принципу "больше - меньше". Измерение в шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в шкале наименований было безразлично, в каком порядке мы расположим классификационные ячейки, то в порядковой шкале они образуют последовательность.Чем больше классов в шкале, тем больше у нас возможностей для математической обработки полученных данных и проверки статистических гипотез. Все психологические методы, использующие ранжирование, построены на применении шкалы порядка.
Если испытуемому предлагается упорядочить 18 ценностей по степени их значимости для него, то испытуемый совершает так называемое принудительное ранжирование, при котором количество рангов соответствует количеству ранжируемых субъектов или объектов (ценностей, качеств и т.п.).
Независимо от того, приписываем ли мы каждому качеству или испытуемому один из 3-4 рангов или совершаем процедуру принудительного ранжирования, мы получаем в обоих случаях ряды значений, измеренные по порядковой шкале. Правда, если у нас всего 3 возможных класса и, следовательно, 3 ранга, и при этом, скажем, 20 ранжируемых испытуемых, то некоторые из них неизбежно получат одинаковые ранги. Все многообразие жизни не может уместиться в 3 градации, поэтому в один и тот же класс могут попасть люди, достаточно серьезно различающиеся между собой. С другой стороны, принудительное ранжирование, может искусственно преувеличивать различия. Единица измерения в шкале порядка - расстояние в 1 класс или в 1 ранг, при этом расстояние между классами и рангами может быть разным (оно нам неизвестно).
Интервальная шкала(метрическая) - это шкала, классифицирующая по принципу "больше на определенное количество единиц - меньше на определенное количество единиц"; такое измерение, при котором числа отражают не только различия между объектами в уровне выраженности свойства (как в порядковой шкале), но и то, насколько больше или меньше выражено свойство. Каждое из возможных значений признака отстоит от другого на равном расстоянии.
Шкала равных отношений - это шкала, классифицирующая объекты или субъектов пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. В физике абсолютная нулевая точка отсчета встречается при измерении длин отрезков или физических объектов и при измерении температуры по шкале Кельвина с абсолютным нулем температур. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности.
По отношению к показателям частот возможно применять все арифметические операции: сложение, вычитание, деление и умножение.
Статистические критерии.
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью. Статистические критерии обозначают также метод расчета определенного числа и само это число.
По соотношению эмпирического (рассчитанного по выборке) и критического значений критерия мы можем судить о том, подтверждается ли или опровергается нулевая гипотеза. В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия превышало критическое, хотя есть критерии (например, критерий Манна-Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила. Эти правила оговариваются в описании каждого из критериев.
В некоторых случаях расчетная формула критерия включает в себя количество наблюдений в исследуемой выборке, обозначаемое как n. В этом случае эмпирическое значение критерия одновременно является тестом для проверки статистических гипотез. По специальной таблице мы определяем, какому уровню статистической значимости различий соответствует данная эмпирическая величина.
В большинстве случаев, однако, одно и то же эмпирическое значение критерия может оказаться значимым или незначимым в зависимости от количества наблюдений в исследуемой выборке (n) или от так называемого количества степеней свободы, которое обозначается как v или как df. Число степеней свободы v равно числу классов вариационного ряда минус число условий, при которых он был сформирован. К числу таких условий относятся объем выборки (n), средние и дисперсии.
Критерии делятся на параметрические и непараметрические.
Параметрические и непараметрические критерии. Примеры.
Параметрические критерии- rкритерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (t-критерий Стьюдента, критерий F и др.)
Сравнение двух выборок по признаку, измеренному в метрической шкале,обычно предполагает сравнение средних значений с использованием параметрического критерия t-Стъюдента. Следует различать три ситуации по соотношению выборок между собой: случай независимых и зависимых выборок (измерений признака) и дополнительно — случай сравнения одного среднего значенияс заданной величиной (критерий r-Стьюдента для одной выборки).К параметрическим методам относится и сравнение дисперсий двух выборокпо критерию F-Фишера. Иногда этот метод приводит к ценным содержательным выводам, а в случае сравнения средних для независимых выборок сравнение дисперсий является обязательной процедурой.При сравнении средних или дисперсии двух выборок проверяется ненаправленная статистическая гипотеза о равенстве средних (дисперсий) в генеральной совокупности. Соответственно, при ее отклонении допустимо принятие двусторонней альтернативы о конкретном направлении различий всоответствии с соотношением выборочных средних (дисперсий). Для принятия статистического решения в таких случаях применяются двусторонние критерии и, соответственно, критические значения для проверки ненаправленных альтернатив.
Непараметрические критерии- критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.).Непараметрические методы сравнения выборок, являются аналогами параметрических методов сравнения средних значений. И почти каждый параметрический метод сравнения средних можетбыть при необходимости заменен своим непараметрическим аналогом либосочетанием непараметрических методов.При выборе между параметрическими и непараметрическими методами следует исходить из свойств самих данных.Непараметрические аналоги параметрических методов сравнения выборокприменяются в случаях, когда не выполняются основные предположения, лежащие в основе параметрических методов сравнения средних значений.При решении вопроса о выборе параметрического или непараметрического метода сравнения необходимо иметь в виду, что параметрические методыобладают заведомо большей чувствительностью, чем их непараметрическиеаналоги. Поэтому исходной ситуацией является выбор параметрического метода. И решение о применении непараметрического метода становится оправданным, если не выполняются исходные предположения, лежащие в основе применения параметрического метода.
Условия, когда применение непараметрических методов является оправданным:есть основания считать, что распределение значений признака в генеральной совокупности не соответствует нормальному закону;есть сомнения в нормальности распределения признака в генеральнойсовокупности, но выборка слишком мала, чтобы по выборочному распределению судить о распределении в генеральной совокупности;не выполняется требование гомогенности дисперсии при сравнениисредних значений для независимых выборок.На практике преимущество непараметрических методов наиболее заметно,когда в данных имеются выбросы (экстремально большие или малые значения).Если размер выборки очень велик (больше 100), то непараметрические методы сравнения использовать нецелесообразно, даже если не выполняютсянекоторые исходные предположения применения параметрических методов.С другой стороны, если объемы сравниваемых выборок очень малы (10 и меньше), то результаты применения непараметрических методов можно рассматривать лишь как предварительные.
При сравнении выборок с использованием непараметрических критериев,как и в случае параметрических критериев, обычно проверяются ненаправленные статистические гипотезы. Основная (нулевая) статистическая гипотезапри этом содержит утверждение об идентичности генеральных совокупностей(из которых извлечены выборки) по уровню выраженности изучаемого признака. Соответственно, при ее отклонении допустимо принятие двусторонней альтернативы о конкретном направлении различий в соответствии с выборочными данными. Для принятия статистического решения в таких случаяхприменяются двусторонние критерии и, соответственно, критические значения для проверки ненаправленных альтернатив.
Самым популярным и наиболее чувствительным (мощным) аналогом критерия t-Стьюдента для независимых выборок является критерий U-Манна-Уитни (Mann-Whitney U). Непараметрическим его аналогом является критерий серий, который еще проще в вычислительном отношении, нообладает заметно меньшей чувствительностью, чем критерий U.
Самым чувствительным (мощным) аналогом критерия t-Стьюдента для
зависимых выборок является критерий Т-Вилкоксона (Wilcoxonsigned-ranktest).Непараметрическим его аналогом является критерий знаков, который ещепроще в вычислительном отношении, но обладает меньшей чувствительностью, чем критерий Т-Вилкоксона. Критерий Т основан на упорядочиваниивеличин разностей (сдвигов) значений признака в каждой паре его измерений (критерий знаков основан на учете только знака этой разности). Соответственно, критерий Т, будучи менее чувствительным аналогом t-Стьюдента,более чувствителен по сравнению с другими непараметрическими критериями для повторных измерений (зависимых выборок).
Критерий HКраскала-Уоллеса (Kruskal-Wallis Н) является непараметрическпм аналогом однофакторного дисперсионного анализа (ANOVA) для независимых выборок, поэтому другое его название — Однофакторный дисперсионный анализ Краскала-Уоллеса (Kruskal-Wallisone-wayanalysis o f variance). Онпозволяет проверять гипотезы о различии более двух выборок по уровню выраженности изучаемого признака.
Критерий χ2-Фридмана (Friedmantest) является непараметрическим аналогом однофакторного дисперсионного анализа (ANOVA) для повторных измерений. Он позволяет проверять гипотезы о различии более двух зависимыхвыборок (повторных измерений) по уровню выраженности изучаемого признака. Критерий χ2-Фридмана может быть более эффективен, чем его метрический аналог ANOVA в случаях повторных измерений изучаемого признакана небольших выборках.
Статистические гипотезы
Обычно исследование проводится для проверки гипотезы, которая является следствием теоретических представлений.1 Эта гипотеза содержит утверждение о связи абстрактных категорий, относящихся к свойствам более илименее широкой совокупности объектов — генеральной совокупности.Предположение, которое проверяется с применением научного метода,называютнаучной гипотезой. Следует отметить, что не всякая гипотеза, атолько та, которая допускает для своей проверки применение научного метода, может претендовать на научность.
Любое исследование сводится к выявлению связи между переменными.Связь эта может выражаться в величине и направлении различий между сравниваемымигруппами или в знаке и величине коэффициента корреляции. То есть связьхарактеризуется своей силой и направлением.
Еще одна не менееважная характеристика связи — ее надежность, «истинность».Надежность связи непосредственно связана с репрезентативностью выборки, с тем, насколько уверенно статистики выборки позволяют судить о соответствующих параметрах генеральной совокупности. Ведь связь, обнаруженнаяв выборке, интересует исследователя лишь в той мере, в какой она позволяетсудить о связи, которая существует в генеральной совокупности.
Надежность связи определяется тем, насколько вероятно, что обнаруженная в выборке связь будет вновь обнаружена (подтвердится) на другой аналогичной выборке, извлеченной из той же генеральной совокупности.Очевидный способ проверки надежности обнаруженной в исследованиисвязи — это многократное проведение аналогичного исследования на разныхвыборках. Однако это и трудоемко и не всегда возможно. Но можно сформулировать вопрос по-другому. Если в генеральной совокупности связи нет, токакова вероятность случайного получения данного результата исследования?Иначе говоря, какова вероятность, что полученный результат является случайным, а на самом деле связи в генеральной совокупности нет? Вопрос, сформулированный таким образом, позволяет получить ответ с использованиемметодов статистики. Соответствующее проверяемое утверждение — об отсутствии связи — называется статистической гипотезой.
Статистическая гипотеза— это утверждение относительно неизвестногопараметра генеральной совокупности, которое формулируется для проверкинадежности связи и которое можно проверить по известным выборочнымстатистикам — результатам исследования. Обычно выделяют основную (нулевую) и альтернативную статистические гипотезы. Основная (нулевая) гипотеза (Н0)— содержит утверждение об отсутствии связи в генеральной совокупности и доступна проверке методами статистического вывода. Альтернативнаягипотеза (Н1)— принимается при отклонении Н0 и содержит утверждение оналичии связи. При этом нулевая и альтернативная гипотезы представляютсобой, в терминах теории вероятности, «полную группу несовместных событий»: если верна одна из них, то другая является ложной, и наоборот, отклонение одной из них неизбежно влечет принятие другой.
Отметим, что статистическая проверка научной гипотезы следует Аристотелевой логике доказательства «от противного». Исследователь обычно заинтересован в установлении связи между изучаемыми явлениями, соответственно, его научная гипотеза обычно содержитутверждение о наличии такой связи. Носредствами статистики по результатам выборочного исследования проверяется гипотеза об отсутствии различий. И научная гипотеза подтверждается в той мере, в какойпо результатам выборочного исследованиявозможно отклонение основной статистической гипотезы.