Механические свойства некоторых черных и цветных металлов и сплавов
Марка | Предел прочности при растяжении, σв, МПа | Относительное удлинение, δ, % | НВ |
Ст0 | 310 | 20 | |
Ст6 | 600 | 12 | |
Сталь 10 | 340 | 31 | - |
Сталь 45 | 610 | 197 | 16 |
Сталь 75 | 1100 | 241 | 7 |
15Х | 700 | 12 | 179 |
50Х | 1100 | 9 | 229 |
40ХС | 1260 | 12 | 255 |
У7.У8 | 187 | ||
ХГ | 58 | ||
Д1 | 410 | 15 | |
Д16 | 520 | 11 | |
Д20 | 400 | 12 | |
Л96 | 240 | 50 | |
Л80 | 320 | 52 | |
ЛА77-2 | 400 | 55 | |
ЛмцА57-3-1 | 550 | 25 | |
Бр ОЦ 10-2 | 250-350 | 10-20 | |
Бр А7 | 600 | 10 | |
Бр Б2 | 500 | 30 | |
СЧ12-28 | 120 | 143-229 | |
СЧ28-48 | 280 | 170-241 | |
СЧ38-60 | 380 | 207-269 | |
ВЧ 45-0 | 450 | - | 187-255 |
ВЧ 40-10 | 400 | 10 | 156-197 |
КЧ 30-6 | 300 | 6 | 163 |
КЧ 45-6 | 450 | 6 | 241 |
Алюминий и его сплавы
Алюминий— металл серебристого цвета, характеризующийся низкой плотностью (2,7 г/см3), высокой пластичностью (8 = 40%), низкими прочностью (σв= 80МПа) и твердостью (НВ 25). Температура плавления — 659°С. Обладает высокой электропроводностью и коррозионной стойкостью. Кристаллизуется в кубической гранецентрированной решетке и полиморфных превращений не имеет. Маркируется буквой А. В зависимости от количества примесей различают алюминий особой чистоты А999 (99,999% А1), высокой чистоты А995, А99, А97 и технической чистоты А85, А8, А7, А6, А5, АО. Применяется алюминий для производства фольги, электрических проводов. Как конструкционный материал используется редко вследствие малой прочности. Сплавы алюминия делятся на литейные и деформируемые.
Литейные сплавы алюминиямаркируются буквами АЛ и числом, показывающим условный номер сплава. Чтобы сплав обладал хорошими литейными свойствами, он должен иметь низкий температурный интервал кристаллизации. Кроме того, желательно, чтобы он имел низкую температуру плавления. Этим требованиям удовлетворяют эвтектические сплавы. Наибольшее распространение получили сплавы алюминия с кремнием, образующие эвтектику при содержании 11,6% кремния. Эти сплавы называются силуминами.
Широко применяется силумин эвтектического состава АЛ2, содержащий 10-12%кремния. Он имеет очень хорошие литейные свойства, НО малую прочность (σв = 180 МПа). Уменьшение содержания кремния и добавка меди, магния и марганца ухудшает литейные свойства силуминов, но улучшает механические. Кроме силуминов используются литейные сплавы алюминия с медью (АЛ7) и магнием (АЛ8), не содержащие кремния. Они обладают значительно большей прочностью, чем силумины, по их литейные свойства хуже.
Деформируемые сплавы алюминияделятся на упрочняемые и не упрочняемые термической обработкой. К сплавам, не упрочняемым термической обработкой относятся сплавы алюминия с марганцем (маркируется АМц) и магнием (маркируются AMгl, ..., АМг7). Эти сплавы имеют низкую прочность, но высокую пластичность и коррозионную стойкость.
К сплавам, упрочняемым термической обработкой относятся дюралюминий, ковочные сплавы, высокопрочные сплавы алюминия. Дюралюминий (дуралюмин) представляет собой сплав алюминия с медью (до 5%), марганцем (до 1,8%) и магнием (до 0,9%). Маркируется буквой Д и цифрой, показывающей порядковый номер (Д1, Д16 и др.). Подвергается термической обработке, которая состоит из закалки от температуры 500°С и естественного старения, заключающегося в выдержке при комнатной температуре в течение нескольких суток. В результате такой обработки прочность повышается в два раза (с 200-240 МПа до 450-500 МПа), а пластичность практически не меняется. Достоинством дюралюминия является высокая удельная прочность (отношение предела прочности к плотности), что особенно важно в самолетостроении. Дюралюминий выпускается в виде листов и прутков.
Высокопрочные сплавы алюминия содержат кроме меди и магния дополнительно цинк (до 10%). Эти сплавы маркируются буквой В (В95, В96). Подвергаются термообработке, аналогичной термообработке дюралюминия, но естественное старение заменяется искусственным старением, заключающимся в выдержке при температуре 120-140°С в течение 16-24ч. В результате предел прочности доходит до 600-700 МПа.
Ковочные сплавы алюминии предназначены для производства деталей ковкой и штамповкой. Маркируются буквами АК и числом, показывающим порядковый номер. По химическому составу близки к дюралюминию (сплав АК1 совпадает по составу с Д1), иногда отличаясь более высоким содержанием кремния (АК6, АК8). Подвергаются аналогичной термообработке.
Малая плотность и высокая удельная прочность обусловили широкое применение алюминиевых сплавов в самолетостроении. Они составляют до 75% массы пассажирских самолетов. Из дюралюминия изготовляются обшивки,, каркасы, из высокопрочных сплавов — тяжелонагруженные детали, из ковочных — кованые и штампованные детали (например, лопасти винта).
Алюминий — самый распространенный на Земле металл — называют летающим металлом. Из него, вернее из его сплавов, самый известный из которых дуралюмин (сплав алюминия с медью, магнием и марганцем) делают фюзеляжи и крылья самолетов. Из сплавов алюминия была изготовлена оболочка нашего первого в мире искусственного спутника Земли.
Алюминий широко применяют в различных отраслях промышленности и в строительстве. Многие детали самых разных машин, перекрытия, наружная облицовка и оконные рамы высотных зданий, аппаратура для производства кислот и многих органических веществ, резервуары для хранения жидкого кислорода, моторные и весельные лодки, посуда, мебель — все это делается из алюминия. Во Франции построен целиком алюминиевый океанский лайнер длиной свыше 300 м. Не только его корпус, но и внутренние переборки, стены кают, даже мебель — алюминиевые.
Рис.52. Применение алюминия
Медь и ее сплавы
Медь— металл красно-розового цвета. Плотность меди 8,94 г/см3,температура плавления — 1О83°С. Кристаллизуется в кубической гранецентрированной решетке и полиморфных превращений не имеет.
Характеризуется невысокими прочностью (а = 150-250 МПа) и твердостью (НВ 60) и хорошей пластичностью (8= 25% в литом состоянии и 8= 50% в горячедеформированном). Обладает высокой электропроводностью, теплопроводностью, коррозионной стойкостью в пресной и морской воде. Благодаря высокой электропроводности около половины производимой меди используется в электро- и радиопромышленности. Как конструкционный материал медь не используется из-за высокой стоимости и низких механических свойств. Маркируется буквой М и цифрами, зависящими от содержания примесей. Медь марок М00 (0,01 % примесей), МО (0,5%) и М1 (0,1 %) используется для изготовления проводников электрического тока, медь М2 (0,3%) — для производства высококачественных сплавов меди, МЗ (0,5%) — для сплавов обыкновенного качества. Основные сплавы меди — латуни и бронзы.
Латунями называют сплавы меди с цинком. Цинк повышает прочность и пластичность сплава, но до определенных пределов. Наибольшей пластичностью обладают латуни, содержащие 30% цинка, а наибольшей прочностью — 45%. Поэтому более 45% цинка в латунях содержаться не может. Кроме того, цинк удешевляет сплав, так как он дешевле меди. Латуни характеризуются высокой электропроводностью и теплопроводностью, коррозионной стойкостью, хорошо обрабатываются резанием.
По технологическому признаку латуни делятся на деформируемые и литейные. По химическому составу латуни делятся на простые (двойные), в которых присутствуют только медь и цинк и сложные (многокомпонентные), в которые для улучшения различных свойств добавлены другие элементы. Наиболее распространены добавки алюминия, олова, кремния, никеля и др.
Латуни маркируются буквой Л. В деформируемых латунях указывается содержание меди и легирующих элементов, которые обозначаются соответствующими буквами (О — олово, А — алюминий, К кремний, Н — никель, Мц — марганец, Ж — железо и т.д.). Содержание элементов дается в % после всех буквенных обозначении. Например, латунь Л63 содержит 63% меди и 37% цинка. Латунь ЛАЖ 60 1-1 содержит 60% меди, 1% алюминия, 1% железа и 38% цинка. В марках литейных латуней указывается содержание цинка, а количество легирующих элементов (в %) ставится после букв их обозначающих. Например, литейная латунь ЛЦ40Мц3А содержит 40% цинка, 3% марганца, менее 1% алюминия и 56% меди.
Бронзами называются сплавы меди с оловом, алюминием, свинцом и другими элементами, среди которых цинк не является основным. Бронзы обладают высокой коррозионной стойкостью, хорошими литейными свойствами, хорошо обрабатываются давлением и резанием. По названию основного легирующего элемента бронзы делятся на оловянные, алюминиевые, кремнистые, бериллиевые, свинцовые и др.
По технологическому признаку бронзы делят на деформируемые и литейные. Маркируются бронзы буквами Бр, за которыми показывается содержание легирующих элементов в %. Обозначения легирующих элементов и отличия в марках деформируемых и литейных сплавов у бронз такие же, как у латуней. Например, деформируемая бронза БрОФ 6,5-0,4 содержит 6,5% олова и 0,4% фосфора, а литейная бронза Бр03Ц7С5Н — 3% олова, 7% цинка, 5% свинца, менее J % никеля.
Особенно широкое применение в машиностроении имеют оловянные бронзы. Деформируемые оловянные бронзы обладают высокой пластичностью и упругостью. Из них изготовляют прутки, трубы, ленты. Литейные оловянные бронзы имеют хорошие литейные свойства, высокую коррозионную стойкость. Из них изготовляют арматуру, работающую в условиях пресной и морской воды. Олово — относительно дорогой металл, поэтому его стремятся частично или полностью имении, в составе бронз другими.
Алюминиевые бронзы (БрА7, БрАЖН 10-4-4) обладают более высокими механическими свойствами и коррозионной стойкостью по сравнению с оловянными. Кремнистые бронзы (БрКМц 3-1) имеют хорошую упругость и поэтому используются для изготовления пружинящих деталей. Свинцовые бронзы (БрСЗО) обладают высокими антифрикционными свойствами и применяются в подшипниках скольжения. Бериллиевые бронзы (БрБ2) отличаются высокой твердостью, прочностью, упругостью и износостойкостью.
Медь имеет самую высокую (после серебра) электрическую проводимость. Из нее делают обмотки трансформаторов и генераторов, линии электропередачи (ЛЭП), электрические провода внутри машин и зданий и многие другие электротехнические изделия, а также коррозионностойкую химическую аппаратуру. Широко используют в технике и медные сплавы — латунь, бронзу и др.
Таблица