Ориентировочный перевод значений твердости, определяемый различными методами
Твердость по Бринеллю (D= 10 мм, Р= 3000 кгс), НВ | Твердость по Роквеллу (шкала С, Р = 150 кгс), HRC | Твердость по Виккерсу, HV | Твердость по Шору, HSD |
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
По твердости в состоянии поставки металлопрокат тяжелых цветных металлов и сплавов отечественных заводов ОЦМ разделяют на следующие виды в зависимости от степени холодной деформации после отжига: мягкий (М) — ε = 0, четвертьтвердый (Ч) - ε = 5... 10%, полутвердый (ПТ) - ε = 15...25%, твердый (Т) - ε = 35...50%, особотвердый (ОТ) - ε > 50
Поскольку твердость косвенно связана с другими показателями механических свойств, то прокат определенной твердости имеет но многих случаях и вполне определенные для данного состояния прочность, пластичность или упругость.
Задание 1. Заполнить таблицу
Методы | Способы измерения | Форма индентора | Нагружение F, H |
Бринелля | |||
Роквелла | |||
Супер-Роквелла | |||
Виккерса | |||
Шора |
Задание 2. Переведите твердости: 220НВ, 50НRC, 30HSD, 700HV в соответствующие другие единицы твердости.
Ответьте на вопросы.
1. Что такое твердость?
2. Какое значение имеет твердость для работы деталей машин?
3. В чем преимущество метода Роквелла перед остальными методами определения твердости?
ДЕПАРТАМЕНТ КУЛЬТУРЫ ГОРОДА МОСКВЫ
Государственное бюджетное профессиональное
образовательное учреждение города Москвы
«ТЕАТРАЛЬНЫЙ ХУДОЖЕСТВЕННО-ТЕХНИЧЕСКИЙ КОЛЛЕДЖ»
для специальности - 55.02.01 Театральная и аудиовизуальная техника (по виду: Сценическая техника и технологии)_
Практическая работа №2
Определение % содержания компонентов в сплаве
по дисциплине__ОП 08в Материаловедение
Разработал: Бабанова И.А.
Москва, 2017
Цель урока.
1.Познакомиться с понятиями: сплав, компонент, фазовая составляющая.
2. Научиться определять % содержание компонентов в сплаве.
Оснащение.Учебник, раздаточный материал, таблицы, диаграммы, плакаты, интернет-ресурсы.
ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ
Сплав – вещество, полученное сплавлением нескольких элементов. Другими словами, сплав – это твердое вещество, обладающее всеми признаками металлов и состоящее из 2-х и более химических элементов. Состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплавлегирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).
Компонент – элемент или химическое соединение, входящее в состав сплава (элементы или химические соединения, образующие сплав). Компонент, преобладающий в сплаве количественно, называется основным. Компоненты, вводимые в сплав для придания ему нужных свойств, называются легирующими.
Фазовая составляющая (фаза) – однородная часть сплава, характеризующаяся определенным составом, свойствами, типом кристаллической решетки и отделенная от других частей сплава поверхностью раздела (при переходе через которую химический состав, структура, а, следовательно, свойства меняются скачкообразно).
Сплавы могут быть и однофазными и многофазными. Однофазные сплавы всегда состоят из кристаллов твердого раствора одного вида (состава).
В многофазных сплавах может одновременно присутствовать несколько структурных составляющих: 1) кристаллы твердого раствора (одного или нескольких составов), 2) кристаллы химических соединений, 3) кристаллы компонент сплава, 4) эвтектики и 5) эвтектоиды.
Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела.
Под структурой понимают форму, размер и характер взаимного расположения фаз в металлах и сплавах.
Структурными составляющими называют обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.
Виды сплавов по структуре.
По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, химические соединения и твердые растворы.
Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.
Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом соотношение чисел атомов в соединении соответствует его химической формуле AmBn. Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структуру, состоящую из одинаковых по составу и свойствам зерен.
При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы замещения образуются в результате частичного замещения атомов кристаллической решетки одного компонента атомами второго. Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6,в.). Твердый раствор имеет однородную структуру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определенном соотношении компонентов, а в интервале концентраций. Обозначают твердые растворы строчными буквами греческого алфавита α, δ, β, τ, и т. д.
Основными структурами, составляющими железоуглеродистые сплавы, являются следующие.
Феррит – твердый раствор углерода в α-Fe. При температуре 723° С предельное содержание углерода 0,02 %. При отсутствии примесей не корродирует.
Цементит – карбид железа Fe3C – химическое соединение, содержащее 6,67 % углерода. Является составной частью эвтектической смеси, а также самостоятельной структурной составляющей. Способен образовывать твердые растворы путем замещения атомами других металлов, неустойчив, распадается при термической обработке. Цементит очень тверд (НВ 800) и хрупок.
Аустенит – твердый раствор углерода в γ–Fe. Атомы углерода внедряются в кристаллическую решетку, причем насыщение может быть различным в зависимости от температуры и примесей. Устойчив только при высокой температуре, а с примесями Mn, Сг – при обычных, даже низких температурах. Твердость аустенита НВ 170...220.
Перлит – эвтектоидная смесь феррита и цементита, образуется при распаде аустенита при температуре 723° С и содержании углерода 0,83 %. Примеси Si и Мn способствуют образованию перлита и при меньшем содержании углерода. Твердость перлита НВ 160...260. Структура перлита может быть пластинчатой и глобулярной (зернистой).
Ледебурит – эвтектическая смесь аустенита и цементита, образующаяся при 1130° С и содержании углерода 4,3 % Структура неустойчивая: при охлаждении аустенит, входящий в состав ледебурита, распадается на вторичный цементит и перлит. Ледебурит очень тверд (НВ 700) и хрупок.
Графит – мягкая и хрупкая составляющая чугуна, состоящая из разновидностей углерода. Встречается в серых и ковких чугунах.
1. В жидком состоянии компоненты сплава обычно неограниченно растворяются друг в друге, образуя жидкие растворы.
Фазовые диаграммы позволяют узнать, какие фазы (т. е. однородные подсистемы, отличающиеся строением и/или свойствами от других) могут присутствовать в данной системе при данных условиях и составе. Для сложных систем, состоящих из многих фаз и компонентов, построение диаграмм состояния по экспериментальным данным и данным термодинамического моделирования является важнейшим способом предсказания поведения в ходе различных процессов. Анализ относительного расположения полей, разделяющих их поверхностей и линий, а также точек сочленения последних позволяет однозначно и наглядно определять условия фазовых равновесий, появления в системе новых фаз и химических соединений, образования и распада жидких и твердых растворов и т. п.
Фазовые диаграммы однокомпонентных систем изображаются на плоскости в координатах p–T. На них присутствуют поля, отвечающие существованию той или иной фазы вещества (газообразной, жидкой, различных твердых модификаций), разделенные линиями фазового равновесия, вдоль которых возможно сосуществование граничащих фаз. Места, где сходятся три различные линии фазовых равновесий, образуют так называемые тройные точки, в которых могут сосуществовать три фазы. Это максимальное число фаз, способных равновесно сосуществовать в однокомпонентных системах.
Кроме того, на фазовой диаграмме однокомпонентной системы могут изображаться метастабильные фазы, т. е. фазы, не являющиеся равновесными, но способные существовать в определенной области параметров в течение длительного времени вследствие кинетической стабильности, а также критическая точка — точка на линии равновесия жидкость–газ, после которой исчезает скачкообразное различие свойств этих фаз, и понятие фазового перехода теряет смысл.
Для характеристики изменений структуры сплавов в зависимости от состава и температуры строят диаграммы состояния. Они представляют собой графическое изображение равновесного или неравновесного состояния сплавов и строят их в координатах температура – состав.
1) Диаграмма состояния двойных сплавов, образующих при затвердевании смесь кристаллов чистых компонентов.Явления, происходящие при затвердевании таких сплавов, совершенно аналогичны тем, которые происходят при затвердевании раствора поваренной соли в воде. Рассмотрим в виде примера сплав свинца с сурьмой, структура которого относится к рассматриваемому типу.
Рис.1. Диаграмма состояния свинца и сурьмы
Чтобы получить диаграмму состояния сплавов системы свинец—сурьма, строим предварительно кривые охлаждения для сплавов с различным содержанием свинца и сурьмы, затем берем систему осей координат ХY и, откладывая по оси X весовые соотношения свинца и сурьмы, а по оси Y — температуры, переносим на нее с кривых охлаждения критические точки.
Чем больше будет взято для наблюдения сплавов с различным содержанием свинца и сурьмы, т. е. чем больше будет построено кривых охлаждения, тем более точно может быть построена диаграмма состояния.
Главных критических точек будет три: температура плавления свинца (327°), температура плавления сурьмы (630°) и температура плавления эвтектики этого сплава (246°), получающаяся, как показывает опыт, при 13% содержания в сплаве сурьмы.
Проследим за изменением в состоянии сплава с содержанием 45% Sb при охлаждении его от 500°. От а до b (фиг. 65) сплав находится в жидком состоянии и представляет собой одну фазу жидкого раствора; в точке b начинается выделение из жидкого раствора кристаллов Sb; в интервале от b до с сплав представляет смесь двух фаз — жидкого раствора и твердых кристаллов Sb, при этом состав жидкой фазы изменяется по линии ликвидуса bВ и в точке с доходит до концентрации 13% Sb. В точке с происходит затвердевание оставшегося жидкого сплава и распадение его на эвтектическую смесь кристаллов Рb и Sb. В период затвердевания эвтектики, пока сплав находится при температуре 246°, он представляет собой смесь трех фаз — жидкого раствора (Pb, Sb), кристаллов Рb и кристаллов Sb. Ниже точки с сплав представляет смесь двух фаз — кристаллов Рb и кристаллов Sb.
2) Диаграммы состояния двойных сплавов, способных образовать химические соединения, нерастворимые в твердом состоянии ни в одном из компонентов. Рассмотрим случай, когда компоненты сплава А и В способны образовать лишь одно химическое соединение С.
Рис.2. Диаграмма состояния двойных сплавов
Пусть для образования химического соединения С требуется Кс%В и (100— Кс)% А; если количество В будет меньше Кс%, то в результате взаимодействия А и В образуется С при некотором свободном остатке свободного A; при избытке же В сверх Кс% образуется С при наличии остатка свободного В. Диаграмма состояния таких сплавов из А и В представлена на фиг, 71.
Области этой диаграммы имеют следующие значения:
При концентрации, равной КэвтАс%, получим эвтектику (А + С).
При концентрации, равной Кс%, получим С.
При концентрации, равной Кэвтсв%у получим эвтектику (С + В).
Имеются металлы, способные образовать между собой не одно, а несколько химических соединений.
Рис.3. Диаграмма состояния меди с магнием
3)Диаграмма состояния двойных сплавов, компоненты которых обладают полной взаимной растворимостью, как в жидком, так и в твердом виде.Если два тела способны сохранить взаимную растворимость не только в жидком, но и в твердом состоянии, то при затвердевании они образуют кристаллы смешанного состава. Вещества, входящие в состав кристаллов твердого раствора, могут содержаться в этих кристаллах в произвольных весовых отношениях.
Если два тела способны к образованию твердых растворов, то при затвердевании жидких растворов этих тел из жидкости начинается выпадение кристаллов твердого раствора, более богатых компонентом, повышающим температуру плавления раствора. Таким образом, кристаллы твердого раствора имеют переменный состав; в случае медленного охлаждения состав кристаллов твердого раствора может выравниваться вследствие диффузии.
4) Диаграмма состояния сплавов, обладающих полной взаимной растворимостью в жидком виде и ограниченной в твердом. Большинство металлов обладает способностью растворять в себе другие металлы или металлоиды лишь в ограниченной степени. Если такой ограниченной взаимной растворимостью обладают вещества А и В, то при затвердевании доэвтектических сплавов сначала будут выпадать кристаллы А, содержащие в растворе некоторое количество В, а при затвердевании заэвтектических сплавов кристаллы В, содержащие в растворе некоторые количества А; эвтектика же будет состоять из кристаллов двух твердых растворов.
С помощью диаграмм состояния для данных равновесных условий можно определить число фаз в системе, относительное количество каждой из фаз, состав каждой фазы и ее природу (чистый компонент, твердый раствор, соединение).
Рис.4. Диаграммы состояний систем медь-алюминий и алюминий - свинец
Диаграмма состояния системы медь—алюминий подробно исследована во всей области концентраций сплавов. Состав жидкой фазы в эвтектической точке соответствует 8,5 вес.% А1. При температурах 1036° и 1022° протекают перитектические реакции. Фаза х существует только в области высоких температур 1036—963°. Фаза β кристаллизуется из расплава по кривой с максимумом, который соответствует температуре 1048° и составу сплава, содержащего 12,4 вес.% Аl. В твердом состоянии имеет место несколько эвтектоидных и перитектоидпых превращений. При температуре 963° Фаза х распадается. В эвтектоидкой точке содержание алюниния соответствует 15,4 вес. %. Концентрационные пределы области гомогенности а2-фазы точно не установлены. Существование а2-фазы объясняет аномальный ход температурной кривой удельной теплоемкости при температуре около 300°, наблюдаемый в однофазных (а) и двухфазных сплавах.
Фаза a — твердый раствор на основе меди охватывает широкую область составов (до 9 вес. % Al), причем с понижением температуры растворимость алюминия в меди повышается. По данным измерения микротвердости при температурах 500, 700, 800 и 900° она составляет 9,4; 8,8; 8,2 и 7,8 вес.% соответственно. При 1037° растворимость Al в твердой меди составляет 7,4 вес.%
Фаза а имеет гранецентрированную кубическую решетку, аналогичную решетке чистой меди, параметр которой увеличивается с повышением содержания алюминия. Фаза β представляет собой твердый раствор на основе соединения Си3А1 (12,44 вес. % А1).
Сплав системы Al-Cu. Из диаграммы видно, что при содержании меди от 0 до 53% имеет место простая эвтектическая система Аl(α) – Аl2Cu(θ) с эвтектикой при температуре 548°С и содержании 33% Cu. Максимальная растворимость (при эвтектической температуре) меди в α-твердом растворе - 57%. Растворимость меди уменьшается с понижением температуры и при температуре 300°С составляет 0,5%. Нерастворившаяся медь находится в равновесном состоянии в виде фазы А2Cu. При средних температурах в результате распада пересыщенного твердого раствора образуются метастабильные промежуточные фазы (θ' и θ").
Cu—Ζn существуют шесть фаз. Фаза (Cu) кристаллизуется из жидкости в интервале температур от температуры затвердевания Cu до 902 °С и при концентрациях до 36,8 % (ат.) Ζn. В твердом состоянии в области (Cu) установлены превращения, указывающие на образование соединения с формулой Cu3Zn, существующее в двух модификациях: α1 и α2 .
Фазы β, γ, δ, ε, (Ζn) образуются по перитектическим реакциям.
Область фазы β ограничена областью концентраций 36,1 % (ат.) Ζn при температуре 902 °С, 56,5 % (ат.) Ζnпри 834 °С; 48,2 % (ат.) Ζnпри 468 °С и 44,8 % (ат.) Ζnпри 454 СС. В интервале температур 454—468 °С происходит упорядочение фазы β: β ↔ β'. Фаза β' распадается по эвтектоидной реакции β' ↔ (Cu) + γ'" (НТ) при температуре -255 °С. Эвтектоидный распад фазы β' происходит при температуре выше100 °С.
Фаза γ имеет широкую область гомогенности, и максимально протяженность ее при температуре 558 °С составляет 13 % (ат), фаза γ существует в четырех модификациях но до температур 250—280 °С стабильна фаза γ'", выше 280 °С устойчива фаза γ", которая при температурах 550—650 °С переходит в фазу γ', выше 700 °С существует высокотемпературная модификация γ.
Фаза δ существует в узком температурном 700—558 °С и концентрационном интервалах и при температуре 558 °С претерпевает распад δ ↔γ" + ε.
Область ε фазы находится в пределах концентраций 78 % (ат) Ζn при температуре 597 °С и 87,5 % (ат.) Ζn при температуре 423 °С. Фаза ε стабильна до комнатной температуры. Растворимость Ζnв (Cu) сначала увеличивается от 31,9 % (ат) при температуре 920 °С до 38,3 % (ат.) при температуре 454 °С, а затем понижается и составляет 34,5 % (ат.) при температур. 150 °С и 29 % (ат.) при 0 °С.