Термаобработка деталей после закалки: обработка холодом, отпуск
Обработка холодом это метод разработан и предложен А. П. Гуляевым в 1937— 1939 гг. Если мартенситное превращение заканчивается в области отрицательных температур, то в закаленной стали при комнатных температурах содержится значительное количество остаточного аустенита. Благодаря обработки холодом уменьшается твердость закаленного изделия, ухудшаются магнитные характеристики, не сохраняются размеры в процессе эксплуатации и т. п. Субструктура остаточного аустенита — большая плотность несовершенств по сравнению с исходным аустенитом (дислокаций, дислокационных сплетений и дефектов упаковки). При обработке холодом охлаждается изделия ниже температуры конца мартенситного превращения (точки М) можно добиться полного или почти полного превращения остаточного аустенита в мартенсит. Обычно изделие охлаждают до температуры порядка -80 °С. Чтобы избежать стабилизации аустенита, обработку холодом рекомендуется проводить сразу же после закалки. Обработке холодом подвергают детали шарикоподшипников, точных механизмов, измерительный инструмент и т. д. Обработка холодом не уменьшает внутренних напряжений, поэтому после такой обработки необходим отпуск.
Отпуск заключается в нагреве закаленной стали до температур ниже Ас1, выдержке при заданной температуре и последующем охлаждении с определенной скоростью. Отпуск является окончательной операцией термической обработки, в результате которой сталь получает требуемые механические свойства. Он частично или полностью устраняет внутренние напряжения, возникающие при закалке.
Отпуск имеет важное практическое значение. Именно в процессе отпуска стальные изделия приобретают свойства, определяющие их поведение в эксплуатации. Температура отпуска обусловливается требованиями механических свойств детали. Низкотемпературный (низкий) отпускпроводят с нагревом до 250°С. Цель - снижение внутренних напряжений. Мартенсит закалки переходит в мартенсит отпуска. Высокая твердость и износостойкость сохраняются. Сохраняется также низкая ударная вязкость. Данному отпуску подвергается металлорежущий инструмент.
Среднетемпературный (средний) отпуск проводится при температурах 350-500°С, структура мартенсита переходит в троостит отпуска. Такой отпуск обеспечивает наиболее высокий предел упругости и несколько повышает вязкость. Такой отпуск применяется для рессор, пружин, а также инструмента, испытывающего ударные нагрузки.
Высокотемпературный (высокий) отпускпроводят при температуре 500-680°С, структура стали после высоко отпуска – сорбит отпуска. Высокий отпуск создает наилучшие соотношения прочности и вязкости. Закалка с высоким отпуском (по сравнению с нормализацией или отжигом) повышает временное сопротивление, предел текучести, относительное сужение и особенно ударную вязкость. Термообработку, состоящая из закалки и высокого отпуска, называется улучшением. Продолжительность отпуска зависит от конкретных изделий. Обычно в течение 1,5 часов напряжения снижаются до минимальной величины, соответ-
ствующей данной температуре отпуска. Некоторым изделиям (измерительный инструмент) делают более продолжительный отпуск.
24.Bлияние легирующих элементов на структуру и свойства стали
Легирующие элементы специально вводят в сталь с целью изменения ее структуры и свойств в отличие от примесей, попадающих в сталь при выплавке из руд, шихты. Стали, содержащие легирующие элементы, называются легированными. В зависимости от содержания легирующих элементов(указанного в скобках) различают низколегированные (до 2…3 %), среднелегированные (3… 10%) и высоколегированные стали (более 10%). Изменение структуры и свойств сталей возможно лишь в том случае, если элементы, вводимые в сталь, взаимодействуют с железом и (или) углеродом, тогда эти элементы и являются легирующими.
Легированными называют стали, в которые кроме железа и углерода вводят легирующие добавки для придания сталям специальных свойств. Основными легирующими элементами являются Mn, Si, Cr, Ni, W. Mo, Со, Ti, V, Zr, Nb и др.
Легирующие элементы по-разному влияют на свойства стали.
Марганец повышает прочность, износостойкость, а также глубину прокаливаемости стали при термической обработке.
Кремний способствует получению более однородной структуры, положительно сказывается на упругих характеристиках стали. Кремний способствует магнитным превращениям, а при содержании его в количестве 15-20 % придает стали кислотоупорность.
Хром повышает твердость, прочность, а при термической обработке увеличивает глубину прокаливаемости, положительно сказывается на жаропрочности, жаростойкости, повышает коррозионную стойкость.
Никель действует так же, как и марганец. Кроме того, он повышает электросопротивление и снижает значение коэффициента линейного расширения.
Вольфрам уменьшает величину зерна, повышает твердость и прочность, улучшает режущие свойства при повышенной температуре.
Молибден действует как и вольфрам, а также повышает коррозионную стойкость.