Стали качественные и высококачественные
Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей (0,03 S и P). Они поставляются в виде проката. Поковок др. полуфабрикатов с гарантированным хим. составом и мех. св-вами. Маркируются двухзначными числами 05, 08, 10, 15, 20,…,85, обозначающими среднее содержание углерода в сотых долях % (ГОСТ 1050-88). Спокойные стали маркируются без индекса, полуспокойные – пс, кипящие – кп. Если сталь высококач-венная, то в конце ставится буква А (Сталь45А). Содержание S и P не более 0,02%. Кач-венные стали находят многостороннее применение в технике, т.к. в зав-ти от содерж. С и термической обработки обладают разнообразными мех. и технологич. св-вами. Стали 05, 08, 10 – малопрочные, высокопластичные, их прим. для холодной штамповки различных изделий. Без т/о в горячекатаном состоянии их используют для шайб, прокладок, кожухов и т.д. Стали 15, 20, 25 – цементуемые, для деталей небольшого размера: кулачки, толкатели, малонагруженные шестерни.
--------------------------------------------------------------------------------------------------------------------------------------
28..Классификация чугунов. Влияние формы выделений графита на свойства чугуна.Сплав железа с углеродом (>2,14 % С) называют чугуном. Присутствие эвтектики в структуре чугуна обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий. 1. СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ Серый чугун (технический) представляет собой, по существу, сплав Fe—Si—С, содержащий в качестве постоянных примесей Mn, P и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок. В зависимости от содержания углерода, связанного в цементит, различают: 1. Белый чугун в котором весь углерод находится в виде цементита Fe3C. Структура такого чугуна — перлит, ледебурит и цементит. 2. Половинчатый чугун, большая часть углерода (>0,8 %) находится в виде Fe3C. Структура такого чугуна — перлит, ледебурит и пластинчатый графит . 3. Перлитный серый чугун структура чугуна— перлит и пластинчатый графит. В этом чугуне 0,7—0,8 % С находится в виде Fe3C, входящего в состав перлита.; 4. Ферритно-перлитный серый чугун. Структура такого чугуна - перлит, феррит и пластинчатый графит. В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 % С 5. Ферритный серый чугун. Структура — феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита. При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры В этом случае механические свойства будут зависеть от количества величины и характера распределений включений графита Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна Чугун с большим количеством прямолинейных крупных графитных выделении, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими и завихренными графитными выделениями обладает более высокими свойствами. Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо от свойств металлической основы практически равно нулю (~0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3—5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие. 2. ВЫСОКОПРОЧНЫЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ Высокопрочными называют чугуны с шаровидным графитом, который образуется в литой структуре в процессе кристаллизации. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу, чем пластинчатый графит, и не является активным концентратором напряжений. Для получения шаровидного графита чугун модифицируют, чаше путем обработки жидкого металла магнием (0,03—0,07 %) или введением 8—10 % магниевых лигатур с никелем или ферросилицием. Под действием магния графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Чугуны с шаровидным графитом (ЧШГ) имеют более высокие механические свойства, не уступающие свойствам литой углеродистой стали, сохраняя при этом хорошие литейные свойства и обрабатываемость резанием, способность гасить вибрации, высокую износостойкость и т. д. Обычный состав чугуна: 3,2—3,6 % С 3. ковкий чугун Ковкий чугун получают длительным нагревом при высоких температурах (отжигом) отливок из белого чугуна. В результате отжига образуется графит хлопьевидной формы. Такой графит по сравнению с пластинчатым меньше снижает прочность и пластичность металлической основы структуры чугуна. Чугун имеет пониженное содержание углерода и кремния
--------------------------------------------------------------------------------------------------------------------------------------
29. Сверхпластичность металлов и сплавов.Под сверхпластичностью понимают способность металла к незначительной пластической деформации (s=102-103%) в определенных условиях при одновременно малом сопротивлении деформированию (10° — 101 МПа). Существуют следующие разновидности сверхпластичности. 1. Структурная, которая проявляется при температурах > 0,5 Тпл в металлах и сплавах с величиной зерна от 0,5 до 10 мкм и небольших скоростях деформации2 (10-5 — 10-1 с-1). 2. Субкритическая (свёрхпластичность превращения), наблюдающаяся вблизи начала фазовых превращений, например, полиморфных. Наиболее перспективен процесс структурной сверхпластичности. Сверхпластичность не является свойством каких-то особых сплавов и при соответствующей подготовке структуры и в определенных условиях деформации проявляется у большого числа сплавов, обрабатываемых давлением. Известно много сплавов на основе магния, алюминия, меди, титана и железа, деформирование которых возможно в режимах сверхпластичности. Сверхпластичность может иметь место лишь при условии, когда в процессе деформации (растяжения образца) не образуется локальной деформации. При локализации деформации в образце возникает местное утонение шейки и он сравнительно быстро разрушается. Высокое сопротивление образованию шейки при растяжении образца в условиях сверхпластичности связано с большой чувствительностью напряжения течения а к изменению скорости деформации e: s = kem, где k — коэффициент, зависящий от структуры и условий испытания; т — показатель скоростной чувствительности напряжения течения. Для идеально вязких (ньютоновских) твердых тел т = 1 и удлинение не должно сопровождаться образованием шейки. В случае обычной пластической деформации т < 0,2, а в условиях сверхпластической деформации т > 0,3 (обычно 0,4—0,7). Когда при сверхпластической деформации начинается образование шейки, в этом участке образца возрастает e и из-за высокого значения т увеличивается сопротивление течению а, благодаря чему образование шейки прекращается. Этот процесс непрерывно повторяется, приводя к образованию так называемой бегущей шейки (размытых шеек), когда она перемещается по длине образца, не давая локализованного сжатия. При такой квазиравномерной деформации достигаются очень большие удлинения при растяжении образца. Структурная сверхпластическая деформация протекает главным образом благодаря зернограничному скольжению, хотя в определенной степени существует и внутризеренное дислокационное скольжение. Проблема создания промышленного структурного сверхпластичного материала — это прежде всего получение ультрамелкого равноосного зерна и сохранение его при сверхпластической деформации. Стабилизация размеров зерна достигается: 1) применением двухфазных сплавов с объемным соотношением фаз 1:1; в этом случае имеет место максимальное развитие межфазовой поверхности, что обеспечивает взаимное торможение роста зерен фаз; 2) использованием дисперсных выделений, являющихся барьером для перемещения границ зерен. В настоящее время для обработки в состоянии сверхпластичности чаще используют цинкоалюминиевый сплав ЦА22 (22 % А1), титановые а α+β-сплавы, двухфазные – α+γ’-сплавы меди и цинка (латунь), алюминиевый сплав, состоящий из α-раствора и дисперсных частиц Al3Zr, и некоторые другие. Явление сверхпластичности в промышленности используют при объемной изотермической штамповке и при пневмоформовке. Сверхпластичность позволяет в процессе штамповки за одну операцию получить детали сложной формы, повысить коэффициент использования металла, уменьшить трудоемкость и стоимость изготовления изделий. Недостатком является необходимость нагрев штампов до температуры обработки и малая скорость деформаций.
--------------------------------------------------------------------------------------------------------------------------------------
30. Механические свойства металлов, определяемые при статических, динамических и циклических испытаниях. Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин). В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала. При оценке механических свойств металлических материалов различают несколько групп их критриев. 1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания). Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по Форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной. 2. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях, эксплуатации. Критерии конструктивной прочности металлических материалов можно разделить на две группы: а) критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.)- В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микро несплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений; б) критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).
Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д. Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.
Если специально приготовленный образец подвергнуть растяжению на машине и записать на диаграммной ленте все изменения, которые будут происходить с ним, то получим кривую, которая называется кривой растяжения.
В первоначальный момент образец растягивается без деформации, т.е. в упругой области. Это имеет место при напряжении sпц. При растяжении большем sпц. Пропорциональность степени напряжения и деформации нарушается. sпц – получила название предел пропорциональности, который равен: sпц=Рпц/Fо, Мпа При деформации металла, в процессе повышения нагрузки, на кривой растяжения может появиться площадка, нагрузка при которой металл деформируется без приложенных дополнительных усилий, называется пределом текучести (физический): sт=Рт./F о, МПа
Деформированием сплавов, у которых отсутствует площадка текучести вводят характеристику, называемую условным пределом текучести. s02 – это усилие, которое вызывает остаточную деформацию 0,2%; sв – предел прочности на растяжение – это максимальная нагрузка, предшествующая разрушению образца. Помимо характеристик прочности из кривой растяжения можно выделить характеристики пластичности: d - относительное удлинение; y - относительное сужение К характеристикам прочности материалов относятся также и твердость. Под твердостью понимается сопротивление материалов проникновению в него посторонних тел (индентора).
Из наиболее распространенных методов измерения твердости металлических материалов можно выделить метод измерения твердости по Бренеллю, по Роксвеллу и по Виккерсу. В случае если необходимо измерить твердость отдельных структурных составляющих, применяют метод измерения микро-твердости.
Твердость по Бренеллю измеряют на прессе Бренелля. В качестве индентора применяют шарик 5-10 мм. К индентору прилагается нагрузка. После снятия нагрузки в месте вдавливания появляется лунка. С помощью лунки измеряют диаметр лунки и затем по соответствующим таблицам переходят от диаметра к числу твердости. Твердость по Бренеллю обозначается НВ. Этот метод измерения твердости используется для измерения твердости сравнительно мягких металлов.
Измерение твердости по Роксвеллу проводят на приборе – твердометр Роксвелла. В качестве индентора используют шарик или алмазную пирамиду. Нагрузка на индентор 60,100 и 150 кг. В случае приложения 60 и 150 кг индентором служит алмазная пирамида, при 100 кг – шарик. Обозначение твердости по Роксвеллу если индентор 60 кг – HRA, 100 кг – HRB, 150 – HRCэ.
Твердость по Виккерсу определяется на приборе Виккерса. В качестве индентора используют алмазную пирамидку. Нагрузка на индентор измеряется в граммах. Твердость определяется на специально приготовленных образцах микрошлиф.
После вдавливания и снятия нагрузки с индентора в микрошлифе остается лунка. С помощью линейку, встроенной в окуляр прибора и затем с помощью специальных таблиц переходят от диагонали отпечатки к числу твердости по Виккерсу HV.
Если необходимо измерить твердость отдельных структурных составляющих, используют метод измерения микро-твердости на ПМТ-приборах.
В качестве индентора также используют алмазную пирамидку. Нагрузка на индентор измеряется в граммах. Твердость определяют на микрошлифах. При увеличении в 400 раз на микрошлифах находят ту структурную составляющую, твердость которой необходимо определить. Под действием нагрузки индентор вдавливается в эту структурную составляющую и оставляет в ней отпечаток. После снятия нагрузки проводят измерение диагонали отпечатка и затем по таблицам переходят к числу твердости.
Ударная вязкость является динамической характеристикой. Образец помещается в крепление и с определенной высоты на него падает маятник, работа тратиться на разрушение образца; ударная вязкость обозначается КСU или КС. Обозначение зависит от формы образца, если образец с подрезом (U-образным), то принимается первое обозначение, если без надреза – второе. С надрезом изготавливаются образцы сравнительно вязких материалов, без надреза – хрупких материалов.
--------------------------------------------------------------------------------------------------------------------------------------
31.Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требований, предъявляемых к полуфабрикатам (отливкам, поковкам, прокату и т. д.) и готовым изделиям, являются отжиг, нормализация, закалка и отпуск.1. ОТЖИГ I РОДА Отжиг I рода в зависимости or исходного состояния стали и температуры ею выполнения может включать процессы гомогенизации, рекристаллизации, снижения твердости ,, снятия остаточных напряжений. Характерная особенность итого вида отжига в том, что указанные процессы происходят независимо от того, протекают ли в сплавах при этой обработке фазовые превращения (а - у) или нет, Поэтому отжиг 1 рода можно проводить при температурах выше или ниже температур фазовых превращений (критических точек А1 и А3). Этот вид обработки в зависимости от температурных условий его выполнения устраняет химическую или физическую неоднородность, созданную предшествующими обработками. Бывает: Гомогенизация (диффузионный отжиг). Рекристаллизацконный отжиг . Высокий отпуск (для уменьшения твердости) Отжиг для снятия остаточных напряжений. 2. ОТЖИГ II РОДА (ФАЗОВАЯ ПЕРЕКРИСТАЛЛИЗАЦИЯ) Отжиг II рода заключается в нагреве стали до температур выше точек Ас1 или Ac3, выдержке и, как правило, последующем медленном охлаждении. В процессе нагрева и охлаждения в этом случае протекают фазовые превращения (γ - а-превращение), определяющие структуру и свойства стали. Понижая прочность и твердость, отжиг облегчает обработку, резание средне- и высокоуглеродистой стали. Измельчая зерно снимая внутренние напряжения Различают следующие виды отжига: полный, изотермический и неполный. 3. ЗАКАЛКА Закалка — термическая обработка — заключается в нагреве стали до температуры выше критической (А3 для доэвтектоидной и а1—для заэвтектоидной сталей) или температуры растворения избыточных фаз, в выдержке и последующем охлаждении со скоростью, превышающей критическую. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергают отпуску. Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь — для повышения прочности, твердости, получения достаточно высокой пластичности и вязкости, а для ряда деталей также высокой износостойкости. Бывает Непрерывная, Прерывистая, Закалка с самоотпуском, Ступенчатая закалка, Изотермическая, обработка стали холодом.
--------------------------------------------------------------------------------------------------------------------------------------