Атомно-кристаллическая структура металла. Элементарная кристаллическая ячейка. Классы симметрии.
При рассмотрении кристаллической решетки принимают следующие условия:
1) кристалл бесконечен;
2) кристаллы образованы атомами;
3) центры атомов будем называть узлами кристаллической решетки;
Кристаллическая решетка – решетка, составленная тремя системами параллельных линий, проходящих через центр атомов. Весьма удобно распределение атомов в кристалле изображать в виде пространственных схем, так называемых элементарных кристаллических решетках(ячейках). Под элементарными кристаллическими решетками понимают наименьший комплекс атомов, которые при многократном повторении в пространстве позволяет получить пространственную кристаллическую решетку. Отрезки, при переносе через которые кристалл совмещается сам собой, называется периодом (параметром) кристаллической решетки. Для описании кристалл. В целом необходимо знать знать периоды, через которые решетка совмещается и знать углы этих направлений. В зависимости от соотношений углов и периодов образуется 7 симгоний (одинаковых углов).
Кубическая симгония : а=в=с, α = β= γ= 900
Тетрагональная: а=в, но не равно с. с/а>1, α = β= γ= 900
Гексагональная: а=в, но не равно с. с/а>1, α= β= 900, γ= 1200.
У металлов 2 симгонии: кубическая (Fe, Al, Cu, Ni, W, Mo, Au, Ag), тетрагональная реже (олово), гексагональная (Ti, Mg, Zn, Cd, Zr).
Кубическая симгония:
1) примитивная: металлы не имеют такой решетки, a=2R ( атомы соприкасаются, R – радиус атомов);
2) ОЦК: большая диагональ равна 4R;
3) ГЦК: диагональ равна 4R ( атомы на пересечении диагоналей каждой грани) .
Каждая решетка имеет свое координационное число – число атомов, находящихся на наиболее близком и одинаковом расстоянии от данного атома. Чем оно больше, тем плотнее. Плотность упаковки – отношение объема, занимаемого атомами данной решетки к объему все решетки. Для определения атомных плоскостей в пространстве, т.е плоскостей, проходящих через атомы, пользуются индексами. NKL – индексы Мюллера, они представляют собой 3 целых рациональных числа, по величине равных обратным отрезкам, отсекаемых данными плоскостями на осях координат. Единицы длины вдоль этих осей выбирают равными длинам ребер элементарных ячеек.
Анизотропия – свойства разные. Она реще выражена у металлов с гексагональными решетками, т.е она менее симметрична. В этом случае в зависимости от направления для всех свойств ( тепловых, электрических и т.п) В основе анизотропии лежит то, что межплоскостные расстояния и плотность расположения (упаковки) атомов зависит от направления в кристалле, т.к сила связи атомов зависит от расстояния между плоскостями. Реже анизотропия проявляется в монокристаллах, полученных искусственным путем. В промышленности чаще используют поликристаллы. (чем меньше зерно, тем свойства лучше и прочнее). В случае поликрист. Строения металла анизотропии нет, т.к среднестатист. расстояние между атомами по всем направлениям оказываются примерно одинаковыми.
7. Строение реальныхкристаллов. Большеугловые и малоугловые границы.
Идеальное строение металлов может объяснить многие их свойства: плотность, тепловое расширение, упругие свойства, удельная теплоемкость. Все эти свойства называются структурными, но нечувствительными. Однако, все реальные кристаллы неидеальны. В их строении всегда присутствуют дефекты, называемые несовершенствами или дефектами кристаллического строения. Дефекты оказывают сильное влияние на некоторые важные свойства: прочность, пластичность, электропроводность. Эти свойства, сильно зависящие от дефектов, называются структурными чувствительными. Все дефекты делятся на следующие группы:
1)точечные – вакансии, атомы внедрения, атомы примесей. Эти дефекты возникают при воздействии тепловых или силовых нагрузок. Размеры точечных дефектов соизмеримы во всех 3 направлениях с размерами атомов.
* - вакансия. В этом месте решетка деформируется, сжимается. Возможно 2 механизма:
1)по Шотки
2) по Френкелю Два дефекта – вакансия и внедренный атом;
Возможно образование примесных атомов. Они могут проникать внутрь кристаллической решетки и будут называться внедренной примесью. Примесный атом образует атомы с малым атомный радиусом (O2, H2,N2), но они деформируют решетку. Примеси замещения занимают узлы кристаллической решетки, т.е замещают собственные атомы. В этом случае решетка о5 искажается. Точечные дефекты играют важную роль, особенно вакансии. Они ответственны за процесс диффузии – основной механической диффузии – движение вакансии. Точечные дефекты оказывают влияние на электро и теплопроводность, кроме того, точечные дефекты взаимодействуют с линейными дефектами, оказывают заметное влияние на механические свойства.
2) линейные дефекты – (дислокации) в одном направлении протяженные, а в других соизмеримы с размерами атомов.
Линейные дефекты – цепочки примесных атомов, цепочки внедренных атомов, цепочки вакансий и дислокаций. Поведение дислокаций определяет механические свойства.
Дислокации могут быть краевые и винтовые.
3) поверхностные дефекты – границы зерен, межфазовые границы, дефекты упаковки;
Если под микроскопом наблюдать микроструктуру металла, то видно, что металл состоит из отдельных зерен, т.е. имеет место зеренное строение. Наиболее дефектные участки в структуре – границы зерен, т.е. места стыка зерен. По границе, помимо примесей, концентрируются и дефекты кристаллической решетки: вакансии и дислокации. Однако зерно само по себе не является совершенным. Оно состоит как бы из мозаики отдельных блоков 10-5…10-6 см. Это так называемые блоки мозаики.
Граница стыков между блоками так же являются дефектными участками в структуре. Блоки можно наблюдать только с помощью электронного микроскопа, увеличивающего в десятки тысяч раз.
Блоки разориентированы друг относительно друга на угол в несколько минут. Блоки могут объединяться в более крупные образования, которые получили названия фрагменты.
4) объемные дефекты.