Макроструктурный анализ металлов
Лабораторная работа №1
Лабораторная работа №2
Лабораторная работа № 3
Лабораторная работа № 4
Лабораторная работа №5
МИКРОСТРУКТУРА УГЛЕРОДИСТОЙ СТАЛИ
В ОТОЖЖЕННОМ СОСТОЯНИИ
ЦЕЛЬ РАБОТЫ: изучение микроструктуры углеродистой стали в отожженном состоянии.
1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ
Отожженное (равновесное) состояние достигается только при медленном охлаждении, обеспечивающем полное завершение всех фазовых превращений согласно диаграмме состояния железо-цементит. Поэтому ее знание необходимо для успешного изучения микроструктуры углеродистой стали в отожженном состоянии.
Углеродистой сталью в соответствии с диаграммой состояния железо-цементит называется железоуглеродистый сплав, содержащий от 0,025 до 2,14%С (последние данные 2,06%С). Кроме железа и углерода, промышленная углеродистая сталь содержит постоянные, технологически необходимые при ее производстве, примеси, такие, как кремний (до 0,5%), марганец (до 0,8%), сера (0,05%), фосфор (0,05%), кислород (0,004%) и др. Малое содержание постоянных примесей в углеродистой стали позволяет рассматривать происходящие в ней процессы образования тех или иных фаз и структур, как в двойных сплавах, по диаграмме состояния железо-цементит.
При нормальной (комнатной) температуре сталь состоит из следующих фаз - феррита и цементита, образующих однофазные - феррит и цементит и двухфазную структурную составляющую - перлит.
Феррит представляет собой ограниченный твердый раствор внедрения углерода в железе, имеет объемноцентрированную кубическую кристаллическую решетку, твердость НВ=600...800 МПа, очень пластичен, ферромагнитен до температуры 768ОС. На диаграмме состояния железо-цементит занимает две области АНN и GPQ. Растворимость углерода в феррите весьма мала (0,025% при t=727ОС; 0,0067% при t=20ОС) и связана, по-видимому, лишь с размещением атомов углерода в дефектных местах кристаллической решетки растворителя - железа. При наблюдении в микроскоп феррит имеет вид однородных зерен светлой или зачастую различной окраски, что объясняется неодинаковой травимостъю зерен, срезанных по различным кристаллографическим плоскостям при изготовлении микрошлифа (анизотропия свойств кристаллов).
Цементит - химическое соединение Fe3C представляет собой карбид железа, содержащий 6,67% углерода, имеет сложную кристаллическую решетку с плотной упаковкой атомов, обладает высокой твердостью НВ=10000 МПа и хрупкостью. При наблюдении в микроскоп после обычного травления с использованием универсального реактива -(4% раствора азотной кислоты в этиловом спирте) цементит, как и феррит, выглядит в виде светлых участков. Вследствие слабой растворимости цементита в кислотах его участки в структуре выступают над окружающим ферритом и остаются более гладкими и блестящими по сравнению с ферритом. Для четкого выявления цементита можно применять специальное травление пикратом натрия, после которого цементит окрашивается в темный цвет, а феррит остается светлым.
Различают первичный цементит (ЦI), выделяющийся в виде игл или пластин при первичной кристаллизации из жидкой фазы в интервале температур линии СD диаграммы состояния железо-цементит (1252-1147ОС) у сплавов, содержащих более 4,3% С; вторичный цементит (ЦII), выделяющийся при вторичной кристаллизации из аустенита в виде сетки по границам его зерен в интервале температур линии ES (1147-727ОС) у сплавов с содержанием углерода более 0,8%; третичный цементит (ЦIII), выделяющийся из феррита в виде сетки по границам его зерен в интервале температур линии PQ (727-20ОС) у всех сплавов, содержащих более 0,0067% углерода.
Перлит представляет собой эвтектоидную смесь двух фаз - феррита и цементита, которая образуется при температуре линии PSK диаграммы (727ОС) в результате эвтектоидного превращения по реакции . Выявленный металлографически в связи с наличием межфазных границ как смесь, перлит по своей природе представляет собой бикристаллическое образование, двухфазный бикристалл, т.е. сросток сильно разветвленных кристаллов разных фаз.
В зависимости от цементита различают пластинчатый перлит с межпластиночным расстоянием более 0,3 мкм, получаемый в результате отжига, и зернистый, получаемый путем специальной термической обработки. Твердость НВ пластинчатого и зернистого перлита составляет соответственно 2000-2500 МПа и 1600-2200 МПа и зависит от степени измельченности (дисперсности) цементита. Другие характеристики механических свойств перлита также обусловливаются свойствами его фазовых составляющих и зависят от степени дисперсности цементита. Чем крупнее составляющие перлит пластины цементита и феррита, тем ниже уровень его механических свойств, причем у крупнопластинчатого перлита снижаются характеристики и прочности, и пластичности. После обычного травления при наблюдений в микроскоп пластинчатый перлит выглядит в виде чередующихся светлых пластин феррита и цементита, причем ширина цементитных пластин приблизительно в 7 раз меньше ширины пластин феррита. При уменьшении увеличения микроскопа в связи со слиянием растравленных границ между ферритом и цементитом последний выглядит в виде темных пластин, почему очень часто на схеме микроструктуры перлит изображают в виде чередующихся светлых пластин феррита и темных пластин цементита. При совсем малых увеличениях перлит наблюдается в виде зерен серого цвета. Зернистый перлит под микроскопом наблюдается в виде светлых включений округлой формы на светлом фоне феррита. Строение перлита целесообразно рассматривать при увеличениях не менее 500 раз.
2. МИКРОСТРУКТУРНЫЙ АНАЛИЗ УГЛЕРОДИСТОЙ СТАЛИ В ОТОЖЖЕННОМ СОСТОЯНИИ
В соответствии с диаграммой состояния железо-цементит углеродистая сталь разделяется на доэвтектоидную, содержащую более 0,025 и менее 0,8% углерода; эвтектоидную, содержащую 0,8% углерода; заэвтектоидную, содержащую более 0,8 и менее 2,14% углерода. Сплавы с содержанием углерода до 0,025% называют техническим железом.
2.1. Микроструктура технического железа
Техническое железо с содержанием углерода менее 0,0067%С, например электролитическое железо, является однофазным и под микроскопом имеет вид светлых однородных зерен феррита (рис.9.1, а). Техническое железо с содержанием углерода более 0,0067% является двухфазным и состоит из феррита и третичного цементита (рис.9.1, б), выделяющегося в соответствии с линией PQ диаграммы состояния железо-цементит.
а | б |
Рис.1. Схема микроструктуры технического железа
с содержанием углерода менее 0,0067% (а, феррит)
и более 0,0067% (б, феррит и третичный цементит). ´500
2.2. Микроструктура доэвтектоидной углеродистой стали
Рис.2. Схема микроструктуры доэвтектоидной углеродистой стали. Феррит и перлит. ´500 | Микроструктура доэвтектоидной углеродистой стали в отожженном состоянии при нормальной температуре состоит из зерен феррита и перлита (рис.2). Феррит выделяется при охлаждении из аустенита ниже линии GS диаграммы состояния железо-цементит. В результате этого процесса содержание углерода в аустените достигает 0,8% и при температуре линии PSK (727ОС) по эвтектоидной реакции аустенит превращается в перлит. С увеличением содержания углерода объемная доля перлита в доэвтектоидной стали увеличивается, а феррита - уменьшается. |
2.3 Микроструктура эвтектоидной углеродистой стали
Микроструктура эвтектоидной углеродистой стали в отожженном состоянии при нормальной температуре состоит из зерен пластинчатого перлита (рис.3). В соответствии с диаграммой состояния железо-цементит перлит образуется в результате эвтектоидной реакции при температуре линии PSK (727ОС). Эвтектоидная двухфазная ферритоцементитная смесь называется перлитом в связи с перламутровым видом микрошлифа после травления при наблюдении в микроскоп
2.4 Микроструктура заэвтектоидной углеродистой стали
В заэвтектоидной углеродистой стали при температурах ниже линии ES диаграммы состояния железо-цементит из аустенита выделяется вторичный цементит. При этом содержание углерода в аустените уменьшается в соответствии с линией ES и при температуре линии PSK (727ОС) становится равным 0,8%. Аустенит с содержанием 0,8% углерода в результате эвтектоидной реакции превращается в ферритоцементитную смесь - перлит. Поэтому после окончания охлаждения микроструктура заэвтектоидной углеродистой стали будет состоять из перлита и вторичного цементита, расположенного в виде сетки по границам зерен пластинчатого перлита (рис.4).
Рис.3. Схема микроструктуры эвтектоидной углеродистой стали. Перлит. ´500 | Рис.4. Схема микроструктуры заэвтектоидной углеродистой стали. Перлит и вторичный цементит. ´500 |
2.5. Микроструктура стали с зернистым перлитом
Микроструктура зернистого перлита, получаемого часто путем специальной термической обработки высокоуглеродистой заэвтектоиднои стали - отжига на зернистый перлит, представлена на рис.5.
Рис.5. Схема микроструктуры заэвтектоидной углеродистой стали после специальной термической обработки. Зернистый перлит. ´500 | Рис.6. Схема микроструктуры доэвтектоидной углеродистой стали после сильного перегрева при отжиге. Феррит в виде игл (видманштеттова структура). ´500 |
2.6. Видманштеттова структура (микроструктура) стали
Структуру с характерной формой феррита в виде игл и пластин в доэвтектоидной углеродистой стали или вторичного цементита в заэвтектоидной углеродистой стали принято называть видманштеттовой (рис.6). Такая структура наблюдается в литой стали, медленно охлажденной из области высоких температур, или в стали, сильно перегретой при отжиге и других видах обработки. Видманштеттова структура отличается крупнозернистостью, очень низкими значениями характеристик механических свойств и определенным расположением феррита и цементита по кристаллографическим плоскостям внутри зерен аустенита, а затем перлита.
Рис.7. Схема микроструктуры доэвтектоидной углеродистой стали после прокатки. Строчечная структура. Феррит и перлит. ´350 | 2.7. Микроструктура холоднодеформированной доэвтектоидной углеродистой стали (строчечная структура) В результате холодной деформации, например, прокатки, возникает ориентированность в расположении зерен. Такую структуру называют строчечной. Строчечная структура доэвтектоидной углеродистой стали после прокатки представлена на рис.7. |
3. МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ
- Уясните цель работы.
- Изучите особенности формирования структуры углеродистой стали при охлаждении из жидкого состояния в равновесных условиях.
- Изучите микроструктуру углеродистой стали в отожженном состоянии (альбом, с.9-12).
- Изобразите схемы микроструктур углеродистой стали в отожженном состоянии.
- Выполните микроструктурный анализ углеродистой стали в отожженном состоянии.
- Проследите за формированием структуры углеродистой стали одного из составов при охлаждении из жидкого состояния.
- Составьте отчет о работе.
4. СОДЕРЖАНИЕ ОТЧЕТА
- Цель работы.
- Определение углеродистой стали.
- Классификация углеродистой стали.
- Определение структурных составляющих углеродистой стали в отожженном состоянии.
- Схемы микроструктур углеродистой стали в отожженном состоянии.
- Микроструктурный анализ углеродистой стали в отожженном состоянии.
- Схемы вероятных микроструктур одного из составов углеродистой стали в процессе охлаждения из жидкого состояния.
5 КОНТРОЛЬНЫЕ ВОПРОСЫ
- Какой сплав называется углеродистой сталью?
- Что представляют собой структурные составляющие стали - феррит, цементит, перлит и какими основными свойствами они обладают?
- Какие сплавы называются техническим железом, доэвтектоидной, эвтектоидной и заэвтектоидной сталью?
- Чем отличается по микроструктуре пластинчатый перлит от зернистого?
- В чем состоит различие между микроструктурами доэвтектоидной, эвтектоидной и заэвтектоидной стали в отожженном состоянии?
- В чем состоит понятие вторичный и третичный цементит?
- Каким путем достигается отожженное (равновесное) состояние стали?
- Какие структуры называются видманштеттовыми?
- В каких случаях появляется видманштеттова структура?
- В каких случаях появляется строчечная структура?
РЕКОМЕНДУЕМЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Гуляев А.П. Металловедение.- М.:Металлургия, 1986.- 544 С., С.148-160, 275-279.
2. Лахтин Ю.М. Металловедение и термическая обработка металлов.- М.:Металлургия. 1984.- 360 С., С.119-128, 193-199.
3. Геллер Ю.А., Рахштадт А.Г. Материаловедение. М.:Металлургия, 1989.- 456 С., С.260-265.
Лабораторная работа №6
МИКРОСТРУКТУРА ЧУГУНА
ЦЕЛЬ РАБОТЫ: изучение микроструктуры чугуна с использованием диаграммы состояния системы железо-углерод и анализ фазовых равновесий в ней.
1. OCHOBHЫE ТЕОРЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ
В настоящее время наиболее широкое применение в промышленности имеют железоуглеродистые сплавы - стали и чугуны. Диаграмма состояния системы железо-углерод дает представление о формировании этих сплавов, начиная от кристаллизации из жидкости и кончая процессами фазовой перекристаллизации в твердом состоянии. Кроме того, диаграмма состояния железо-углерод позволяет оценить структуру сталей и чугунов в равновесных условиях, определяющую многие их свойства; установить температуру нагрева при термической обработке и решить целый ряд других задач.
Различают чугуны эвтектический (4,3% С), доэвтектический (2,14-4,3% С) и зазвтектический (более 4,3% С). Эвтектический чугун (сплав 10, см. рис.1) в процессе кристаллизации распадается с образованием смеси аустенита состава точки Е и цементита. Такое превращение называется эвтектическим, а продукт превращения - смесь цементита и аустенита - ледебуритом (эвтектикой). Эвтектическое превращение, будучи трехфазным, согласно правилу фаз протекает при постоянной температуре (рис.2). В соответствии с линией ES из аустенита ледебурита при охлаждении в интервале 1147-727ОС выделяется вторичный цементит и при температуре 727ОС превращается в перлит.
Рис.1. Диаграмма состояния системы железо-цементит
В доэвтектическом чугуне (см. рис.1., сплав 11) описанным превращениям предшествует первичная кристаллизация с образованием аустенита (рис.3). В заэвтектическом чугуне (см. рис.1, сплав 12) продуктом первичной кристаллизации является цементит (рис.4). При этом на уровне температур 1147ОС жидкость в смесях Ж+А и Ж+Ц приобретает эвтектический состав и превращается в ледебурит.
010-С | С-С¢ | |
С¢-110 | 110-1¢10 | |
1¢10-210 | ||
Рис.2. Кривая охлаждения, фазовые реакции и схемы структур на всех этапах охлаждения сплава 10 |
Таким образом, кристаллизация всех сплавов в интервале содержания углерода от 2,14 до 6,67% завершается эвтектическим превращением при одинаковой температуре на линии ECF – 1147ОС (см. рис.8), всем чугунам свойственно также выделение из аустенита вторичного цементита в интервале 1147-727ОС, протекание эвтектоидного превращения при температуре 727ОС и выделение ферритом третичного цементита ниже 727ОС. Формирование структуры чугуна при охлаждении из жидкого состояния сопряжено с протеканием двух нонвариантных превращений эвтектического и эвтектоидного. Поэтому на кривых охлаждения образуются две изотермические площадки при температурах 1147ОС и 727ОС (см. рис.2-4).
011-111 | 111-211 | |
211-2¢11 | 2¢11-311 | |
311-3¢11 | 3¢11-411 | |
Рис.3 Кривая охлаждения, фазовые реакции и схемы структур на всех этапах охлаждения сплава 11 |
Структура эвтектического чугуна при нормальной температуре представлена ледебуритом, доэвтектического - ледебуритом и перлитом, заэвтектического - ледебуритом и первичным цементитом.
Диаграмма состояния железо-цементит содержит информацию о фазовом состоянии различных сталей и чугунов. Наряду с этим она позволяет решать задачи, связанные с определением состава фаз и количественного соотношения фаз.
Например, сплав 11 (см. рис.1) при температуре точки 311 содержит феррит состава точки Р и цементит состава точки К. При этом количество феррита равно 311К/РК, а цементита - Р311/РК.
012-112 | 112-212 | |
212-2¢12 | 2¢12-312 | |
312-3¢12 | 3¢12-412 | |
Рис.4. Кривая охлаждения, фазовые реакции и схемы структур на всех этапах охлаждения сплава 12 |
3. МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ
- Уясните цель работы.
- Изучите диаграмму состояния системы железо-углерод.
- Выполните по заданию, приведенному в таблице 1, анализ процесса кристаллизации в равновесных условиях одного из железоуглеродистых сплавов.
Для этого:
- постройте диаграмму состояния системы железо-цементит, укажите на ней фазовые области и проведите линию состава заданного сплава;
- постройте кривую охлаждения;
- проверьте, используя правило фаз Гиббса, правильность построения кривой охлаждения;
- опишите превращения, происходящие при охлаждении сплава,
приведите уравнения фазовых реакций;
- изобразите вероятную структуру сплава для каждого этапа охлаждения;
- определите состав и количественное соотношение фаз при заданной в таблице температуре.
- Составьте отчет о работе.
Исходные данные для анализа процесса кристаллизации
железоуглеродистых сплавов в равновесных условиях
Номер варианта | Содержание углерода, в сплаве, % | Температура t, ОС |
0,1 | ||
0,3 | ||
0,4 | ||
0,5 | ||
0,8 | ||
1,0 | ||
1,5 | ||
2,0 | ||
2,5 | ||
3,0 | ||
3,5 | ||
4,3 | ||
5,0 | ||
5,5 | ||
6,0 |
Примечания: 1. Номер варианта выбирается по номеру в списке подгруппы.
2. Характерные точки сплава на диаграмме и на кривой охлаждения целесообразно указывать как 01, 11, 21, где 0, 1, 2 и т.д. - номер точки, а подстрочная единица - номер исследуемого сплава.
4 СОДЕРЖАНИЕ ОТЧЕТА
- Цель работы.
- Основные теоретические представления о диаграмме состояния системы железо-углерод.
- Анализ процесса кристаллизации одного из железоуглеродистых сплавов в равновесных условиях.
5 КОНТРОЛЬНЫЕ ВОПРОСЫ
- Почему диаграмма состояния железо-цементит является метастабильной системой?
- Что называется ферритом, аустенитом, цементитом, перлитом, ледебуритом?
- Укажите на диаграмме линию ликвидус, линию солидус, линии нонвариантных реакций.
- Какую кристаллическую решетку имеет a-железо, g-железо?
- Изобразите геометрические образы нонвариантных перитектической, эвтектической, эвтектоидной реакций.
- Опишите с помощью уравнений нонвариантные реакции.
- Укажите фазовое состояние в различных областях диаграммы.
- Укажите структурное состояние при нормальной температуре доэвтектоидной, эвтектоидной, заэвтектоидной стали и доэвтектического, эвтектического, заэвтектического чугуна.
- В чем заключается отличие цементита первичного от вторичного и третичного?
- Определите количественное соотношение феррита и цементита в перлите и ледебурите.
РЕКОМЕНДУЕМЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК
4. Гуляев А.П. Металловедение.- М.: Металлургия, 1986.- 544С., С.142-160.
5. Лахтин Ю.М. Металловедение и термическая обработка металлов.- М.: Металлургия, 1984.- 360 С., С.116-128.
6. Металловедение и термическая обработка стали. В 3-х т. Т.2. Основы термической обработки/ Под ред. Бернштейна М.Л., Рахштадта А.Г.- М.: Металлургия, 1983.- 368 С., С.67-83.
Лабораторная работа №7
Лабораторная работа №8
Лабораторная работа №9
Лабораторная работа № 10
Лабораторная работа №1
МАКРОСТРУКТУРНЫЙ АНАЛИЗ МЕТАЛЛОВ
ЦЕЛЬ РАБОТЫ: изучение методических основ и приемов макроструктурного анализа металлов.
1 ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ
Макроструктура - строение металлов и сплавов, выявляемое невооруженным глазом или лупой (´30) на шлифованных и/или протравленных образцах. Макроструктурный метод позволяет, что важно, одновременно анализировать всю поверхность изучаемого объекта или значительную ее часть. Макроструктуру можно наблюдать на поверхности детали, в изломах, а также на специально подготовленной поверхности образца - макрошлифе, который получают путем шлифования и травления различными реактивами. В результате избирательного растворения металла на поверхности макрошлифа выявляется структура, по которой судят о строении и "поведении" металла в процессе обработки и его качестве. Состав реактивов для травления зависит от природы металла и определяемых целью исследования задач. Например, для выявления структуры слитков и проката из стали различных марок применяют раствор соляной, серной кислот и воды в соотношении 1:2:3 при температуре 95-100ОС. При этом травление проводят в течение 1,5-2 ч погружением макрошлифов в раствор. С целью сохранения структурной картины макрошлифы тщательно промывают в проточной воде и протирают ватным тампоном, смоченным в спирте. Макрошлиф, приготовленный на поверхности сечения детали, часто называют темплетом. Для выявления различных особенностей макроструктуры применяют специальные реактивы.
2 ПРАКТИКА МАКРОСТРУКТУРНОГО АНАЛИЗА МЕТАЛЛОВ
2.1 Макроструктура отливок (слитков)
Впервые описание процессов кристаллизации из жидкого состояния на основе макроструктурного анализа дал Д.К.Чернов в 1878 г. Для изучения строения слитка делают продольный и поперечный разрезы, шлифуют и протравливают. При исследовании макрошлифа слитка можно выявить зоны кристаллизации, ликвацию, усадочные раковины, рыхлость, газовые пузыри.
Неравномерное растворение поверхности металла приводит к появлению макрорельефа, который отражает развитие процесса кристаллизации слитка. Наиболее часто можно наблюдать три основные зоны кристаллизации (рис.1): 1 - наружная зона мелких кристаллитов, образующаяся в первые моменты кристаллизации при высокой скорости охлаждения за счет соприкосновения жидкого металла с изложницей; 2 - зона длинных столбчатых кристаллитов (зона транскристаллизации), формирующаяся в результате интенсивного направленного отвода тепла - перпендикулярно стенкам изложницы; 3 - зона равноосных различно ориентированных кристаллитов, образующаяся в центральной части слитка при наименьшей степени переохлаждения и отсутствии интенсивного направленного отвода тепла.
Рис.1 Схема макроструктуры стального слитка: 1,2,3 – зоны кристаллизации; 4 – усадочная раковина; 5 - рыхлость, поры | Форма кристаллитов зависит от условий их роста: интенсивности и направления отвода тепла, температуры жидкого металла, а также от наличия примесей, способных быть центрами кристаллизации. Рост кристаллов происходит по дендритной (древовидной) схеме. Д.К.Чернов показал, что с наибольшей скоростью растет ось первого порядка; перпендикулярно к ней, но с меньшей скоростью, - ось второго порядка и т.д. Наибольшая скорость роста осей дендритов происходит по кристаллографическим плоскостям и направлениям решетки с наибольшей плотностью упаковки атомов. Дендриты растут до соприкосновения друг с другом, после чего кристаллизуются межосные пространства и дендриты превращаются в полновесные кристаллиты, имеющие неправильную внешнюю огранку (их называют кристаллитами, или зернами). |
В межосных объемах и на границах кристаллов скапливаются примеси, а также образуются поры из-за усадки. Дендритную форму кристаллов видно на поверхности усадочной раковины и в местах недостаточного подвода жидкого металла, когда образуются только оси дендритов. Д.К.Чернов нашел в усадочной раковине 100-тонного стального слитка крупный дендрит, который имел длину 39 см и массу 3,45 кг.
После кристаллизации металл занимает меньший объем, чем жидкий. Уменьшение объема при переходе металла из жидкого состояния в твердое называется усадкой, в результате усадки внутри слитка образуются усадочные раковины, рыхлость, поры. Усадочные раковины образуются в том месте, где металл кристаллизуется в последнюю очередь. Размер, форма и расположение усадочных раковин зависит от формы слитка, степени раскисления металла и других факторов. В слитке, уширенном к верху, усадочная раковина получается широкой и неглубокой, а в уширенном к низу - глубокой и узкой.
Усадочная рыхлость и поры располагаются обычно под усадочной раковиной, а в тех местах, где сходятся оси дендритов, растущих навстречу друг другу или под углом, образуются межкристаллические пустоты.
Газовые пузыри возникают при кристаллизации в результате выделения газов из расплавленного металла. Их количество зависит от соотношения между скоростями кристаллизации и выделения газа. Газовые пузыри образуются за счет выделения растворенных в металле газов и по форме представляют небольшие сфероидальные или эллипсоидальные полости. Если пузыри расположены внутри слитка и стенки их не окислены, то при ковке или прокатке они завариваются. Если газовые пузыри расположены вблизи поверхности или выходят наружу, то стенки их оказываются окисленными и они не завариваются. Такие пузыри представляют неисправимый порок слитка, так как приводят к образованию трещин и пленок, располагающихся на поверхности и внутри поковок или прокатанного металла.
Ликвацией называется неравномерность слитка по химическому составу. Различают следующие виды ликвации: внутрикристаллитную (дендритную), зональную и по удельному весу.
1 Внутрикристаллитная или дендритная ликвация - неравномерность по составу в пределах одного дендрита. Оси дендритов формируются в первую очередь и содержат больше тугоплавких компонентов и меньше легкоплавких примесей, чем междендритные участки. Степень ликвации в пределах каждого дендрита, например, стали или чугуна, тем выше, чем больше содержание углерода, серы, фосфора и других элементов. Имеет место также межкристаллитная ликвация - неравномерность по составу на границе между дендритами. Длительное пребывание расплавленного металла при высоких температурах способствует выравниванию химического состава и уменьшению степени ликвации. Неравномерность по составу выявляется травлением в виде дендритной структуры.
2 Зональная ликвация - неравномерность по составу между отдельными зонами кристаллизации слитка. Вначале образуются кристаллы относительно чистые от примесей. Они вытесняют в центральную часть слитка наиболее легкоплавкую жидкую фазу, богатую примесями серы, фосфора и легирующими элементами. Центральная часть слитка, кристаллизующаяся последней, содержит повышенное количество примесей.
В железоуглеродистых сплавах сильно ликвируют сера и фосфор. Сера, образуя сульфид FeS, входит в состав легкоплавкой эвтектики, плавящейся при 985ОС.
Зональную ликвацию сульфидных включений можно выявить, если сделать сернистый отпечаток на фотобумаге по методу Баумана. Для этого засвеченную фотобумагу смачивают 5%-ным раствором H2SО4, слегка подсушивают и прижимают к ней исследуемый образец шлифованной поверхностью, выдерживая в течение 2-3 минут, затем фотобумагу снимают, промывают в воде, закрепляют в 10%-ном растворе гипосульфита в течение 5-12 минут и снова промывают в воде. Сущность метода состоит в том, что на тех участках поверхности металла, в которых имеются скопления сернистых соединений FeS и MnS, при взаимодействии с серной кислотой выделяется сероводород, который соединяется с бромистым серебром фотобумаги и образует сернистое серебро темного цвета:
FeS+H2SO4=FeSO4+H2S;
H2S+2AgBr=Ag2S+2HBr.
Образующиеся на фотобумаге темные участки указывают на характер и форму распределения включений сульфидов в железоуглеродистом сплаве (рис.2).
Рис.2. Опечаток по методу Баумана, снятый с микрошлифа поперечного разреза слитка | Рис.3. Схема макроструктуры слитка сплава системы Pb-Zn с ликвацией по удельному весу |
3 Ликвация по удельному весу наблюдается в том случае, когда компоненты, составляющие сплав, и образующиеся фазы имеют большую разницу в удельных весах, например, в сплавах Pb-Zn, Cu-Pb. Фаза с большим удельным весом оседает на дно, а более легкая всплывает на поверхность (рис.3). Для устранения ликвации по удельному весу сплав должен быть тщательно перемешан и быстро закристаллизован.
2.2 Макроструктура горячедеформированных металлов
В процессе горячей обработки слитка давлением (прокатка, ковка) меняется его макроструктура: дендриты и пластичные включения (сульфиды, силикаты) вытягиваются в направлении течения металла. Вытянутые дендритные оси и междендритные участки объема образуют совокупность параллельных волокон. Образованные таким образом волокна ясно видны на протравленном макрошлифе (рис.4).
Механические свойства горячедеформированного металла, особенно ударная вязкость, различны в разных направлениях. Если нагружение деталей производится вдоль волокон, то ударная вязкость резко снижается. Обычно стремятся получить такое расположение волокон, чтобы волокна следовали конфигурации изделия и не пересекались.
а | б |
Рис.4. Схема макроструктуры поковок коленчатого вала с правильным (а) и неправильным (б) расположением волокон в стали
2.2.3 Макроструктура детали после местной закалки
Часто одна и та же деталь должна иметь различную структуру и свойства по сечению, например, поверхностный слой толщиной 2-4 мм Должен быть закален для получения высокой твердости и прочности, а сердцевина - остаться мягкой. Такая закалка называется местной. С помощью макроструктурного анализа можно определить глубину закалено-
го слоя. Для этого достаточно отшлифовать поверхность разреза детали и протравить 10%-ным раствором азотной кислоты в воде до проявления закаленной зоны, которая окрашивается в более темный цвет (рис.5). Это связано с наличием в зоне закалки более дисперсной структуры и, как следствие, - с большей поверхностью границ фаз. | Рис.5.Схема макроструктуры детали после местной закалки |
2.4. Макроструктура изломов
Металлы имеют зернистое строение, которое хорошо видно в изломах. По виду излома можно определить характер разрушения, в чугунах - вид чугуна, в термически обработанных сталях - приблизительно температуру нагрева при термической обработке, глубину закаленного и цементированного слоя и др.
Волокнистый излом соответствует вязкому разрушению, а кристаллический излом - хрупкому разрушению.
Белый чугун имеет светло-серебристый хрупкий излом, обусловленный наличием в структуре большого количества карбида железа - цементита; серый чугун - мелкокристаллический излом серого цвета; ковкий чугун с ферритной металлической основой - мелкокристаллический черный бархатный излом, а ковкий чугун с основой пластинчатого перлита - среднекристаллический блестящий излом; литейный доменный чугун - мелкокристаллический светлый излом.
Инструментальная сталь У10, закаленная от оптимальной температуры 760-780ОС, имеет очень мелкокристаллический матовый фарфоровидный излом.
Перегретая сталь, закаленная от температур 950ОС и выше, обладает крупнокристаллическим изломом. Перегрев - исправимый брак, заключающийся в росте зерен, которые можно измельчить правильной повторной термической обработкой.
Пережженная сталь имеет грубокристаллический излом темного цвета. При нагреве до температур начала плавления (1400ОС) границы зерен окисляются на всю глубину детали. Наличие на поверхности излома цветов побежалости или окалины свидетельствует о неисправимом браке - пережоге.
Многие детали, от которых требуется иметь высокую твердость только поверхностного слоя и вязкую незакаленную сердцевину, подвергаются поверхностной закалке. Глубину закаленного слоя можно определить по излому. Закаленный слой имеет фарфоровидный матовый излом, а сердцевина - кристаллический излом более светлого цвета (например, такой вид излома характерен для напильника)
2.5 Макроструктура сварных соединений
Для макроструктурного анализа сварного соединения разрез делают так, чтобы исследуемая поверхность включала в себя полное сечение сварного шва, зону термического влияния и основной металл, не изменивший свое строение под действием тепла при сварке. После шлифовки и соответствующего травления четко выявляются границы между основным и наплавленным металлом, а также зоной термического влияния.
При сварке всегда имеет место нагрев окружающего шов основного металла, в результате чего образуется зона термического влияния, состоящая из слоя перегретого металла с крупнозернистым строением, за которым идет тонкий слой с мелкозернистым строением, а потом - основной металл. Поскольку крупнозернистая структура имеет пониженную пластичность и ударную вязкость, то после сварки часто производят отжиг для измельчения зерна.
Анализ макрошлифа позволяет выявить процесс кристаллизации сварного шва