Кристаллическое строение металлов.

Н.В. Храмцов

Металлы и сварка

(лекционный курс)

 
  Кристаллическое строение металлов. - student2.ru

Кристаллическое строение металлов. - student2.ru

Введение

Человечество с древних времен знакомо с металлами. Орудия труда , хозяйственная утварь и украшения в основном изготовлялись из металла. Освоение материалов шло в последовательности : камень, золото , серебро , медь ( бронза ) и железо, поэтому по материалу орудий труда и оружия исторические периоды развития человечества делятся на каменный , бронзовый и железный века. Следовательно, в настоящее время мы живем в веке железа. Огромны природные ресурсы металлов, так доля железа ( по весу ) составляет 1/3 части всего земного шара ,а в поверхностном слое его ( до 1 км ) находятся 5 % железа , 8 % алюминия , 28 % кремния, 47 % кислорода и только 0, 0000005 % золота и 0, 00001 % серебра . Запасов только разведанных месторождений железа хватит для человечества более чем на два последующих столетия.

На человека в мире приходится в среднем около 4 тонн железа, из которого изготовлены строительные конструкции, трубопроводы, машины, трактора, грузовые и легковые автомобили, бытовые приборы, инструмент и пр. В машинах и строительных конструкциях преобладают детали , изготовленные из стали и чугуна. Более редкие и чаще всего дорогие металлы и сплавы в основном используются в радиоэлектронике и для украшений .

В связи со столь широким использованием металлов в нашей практической деятельности чрезвычайно велика роль знаний о металлах, о технологии изготовления и ремонта деталей и конструкций. Человек, знающий металлы и умеющий их обрабатывать, всегда пользовался уважением и почетом у всех народов мира. Так единственным «рабочим» богом во многих религиях были кузнецы: Гефест у греков, Сварог у славян, Вулкан у римлян. В Англии многие удачные кузнецы даже становились лордами.

Старинная легенда рассказывает, что царь Соломон по окончании строительства Иерусалимского храма ( XI век до новой эры) задумал прославить лучших строителей и пригласить их во дворец, а на время пира уступить свой царский трон лучшему из лучших- тому, кто особенно много сделал для строительства храма. Когда приглашенные явились во дворец, то один из них быстро взошел по ступеням золотого трона и сел на него. Его поступок вызвал изумление у присутствующих.

-Кто ты и по какому праву занял трон? - грозно спросил разгневанный царь.

Незнакомец обратился к каменщику и спросил его : Кто сделал твои инструменты?

-Кузнец, - ответил тот.

Сидящий на троне обратился к плотнику, столяру: -Кто вам сделал инструменты?

-Кузнец, -ответили те.

И все ,к кому обращался незнакомец, отвечали :

-Да ,кузнец выковал наши инструменты , которыми и был построен храм.

И царь согласился с доводами кузнеца, что никто из присутствующих строителей не смог бы выполнить свою работу без сделанных кузнецом инструментов , а сам кузнец заслуживает наибольшего почета среди строителей.

В настоящее время без автомобиля и водителя, без экскаватора и экскаваторщика, без крана и крановщика, без слесаря, токаря, сварщика и других работников, связанных с изготовлением, эксплуатацией и ремонтом машин и металлоконструкций нельзя представить современную стройку.

Инженер-строитель в своей практической деятельности непрерывно связан с использованием металлов в строительных конструкциях, с организацией труда рабочих и технологией рационального использования машин. Чтобы эффективно руководить производством надо «понимать» металлы и знать основы технологии их обработки, конструкторские особенности машин, особенности эксплуатации и ремонта их.

1. Металлы и сплавы.

Большая часть (3/4) всех химических элементов периодической системы Д. И. Менделеева – металлы. По своим свойствам они отличаются от неметаллов: сочетают высокую прочность и твердость с хорошей пластичностью, обладают литейными свойствами и возможностью механической обработки, хорошо проводят тепло и электричество, но плохо пропускают рентгеновские лучи и отражают световые волны. Эти свойства обуславливаются особенностями внутриатомного строения металлов..

Требования к металлам.

Для того чтобы оценить качество материалов и изготовленных из них деталей, поведение их в конкретных узлах, деталях и машинах в изменяющихся условиях эксплуатации, для прогнозирования использования , ремонта и технической эксплуатации машиностроительных и строительных конструкций необходимо знать их свойства .

Это люди давно поняли. И человек в своей практической деятельности сначала на глаз и на ощупь, с помощью простейшего инструмента, а далее с использованием сложных приборов и методик проверял качество предметов и продуктов труда.

Так, в 1722 г. царем Петром І был издан указ « О пробовании железа ». Приборов в то время практически не было, поэтому испытания надо было проводить доступными и простыми средствами. Основным показателем было разрушение металла при изгибе и ударе. По этому указу железо сортировалось по трем сортам.

Первая проба. Пластину железа трижды огибали и разгибали вокруг столба, диаметром 6 вершков ( 1 вершок = 4,45 см ), вкопанного в землю . Если нет излома и трещин, то железо является первосортным.

Вторая проба. Если железо не выдержало первой пробы (есть трещины или изломы) то проводились последующие испытания, естественно, нового образца, а не ранее разрушенного. Железные полосы били о наковальню сначала одним концом трижды, а потом другим концом - тоже трижды , и «которые выдержат, знака к перелому не будет , то ставить клеймо №2 ».

Третья проба. Если металл не выдержал этих двух испытаний , то ставят рядом с заводским клеймом клеймо №3 .

Кристаллическое строение металлов. - student2.ru
М. В. Ломоносов впервые предложил испытывать материалы на трение и износ, и была изготовлена для этого специальная машина трения. В 1897 году были разработаны международные нормы по испытанию металлов. Основой расчета деталей до 20 30 годов ХΙХ- го столетия служили показатели статических испытаний: предел текучести, предел прочности и модуль упругости. В 20…30 годах ввели понятия усталостной прочности, предела усталости при знакопеременных нагрузках , при изгибе, кручении и растяжении – сжатии.

Качество металлов это комплексный показатель (рис.1.9). Нельзя по отдельному показателю оценить качество. Например, металл может быть очень твердым (хороший показатель) , но хрупким и недолговечным (плохие показатели). Комплекс свойств металлов можно разделить на группы, дающие ответы на вопросы по их практическому использованию ( табл. 1.1) .

Таблица 1.1

Основные группы свойств металлов.

Свойства металлов и сплавов На какие вопросы отвечают
Химический состав Что заложено?
Структура металла Как заложено?
Физические характеристики (электропроводность, плотность, твердость теплопроводность, цвет, температуры плавления и кристаллизации ,…) Каков материал по физическим свойствам ?
Механические свойства (пластичность, прочность, вязкость, упругость,…) Каковы возможности использования материала?
Технологические свойства (литейные ,ковкость, свариваемость, обработка резанием,…) Как изготовить деталь?
Износостойкость, усталостная прочность. коррозийная стойкость,… Какова долговечность детали , изготовленной из материала ?

Свойства металлов определяются различными методами : физическими, химическими и технологическими.

Твердость характеризует сопротивляемость материалов пластическим деформациям. Чем выше твердость, тем больше прочность и меньше износ детали. Особенно это имеет большое значение для рабочих органов (лапа, лемех, нож) строительных и дорожных машин, работающих в условиях абразивного ( песок, щебень,…) изнашивания .

Твердость определяется по вдавливанию шарика, алмазного конуса или алмазной пирамидки в металл. Значение твердости характеризуется диаметром отпечатка или глубиной внедрения индентора ( закаленного шарика, алмазного конуса или алмазной пирамиды). Естественно, чем тверже материал, тем меньше будет его деформация, соответственно, меньше диаметр и глубина отпечатка ). Чаще всего используются три основных метода определения твердости: по Брюнеллю , Роквеллу и Виккерсу.

При определении твердости (рис. 1.10) по Бринеллю в испытываемую поверхность вдавливается стальной закаленный шарик диаметром D= 2,5 ; 5 или 10 мм при нагрузках в пределах 0,625…30 кН. Далее замеряется диаметр отпечатка.

Число твердости по Брюнеллю представляет собой отношение нагрузки Р (в кгс) к площади F ( в мм2) поверхности отпечатка :

НВ = Р/ F =2Р / pD[D —( D2-d2) 1/2] кгс / мм2 .

Кристаллическое строение металлов. - student2.ru По физической сущности твердость по Бринеллю является напряжением и выражает сопротивление пластической деформации.

Существует линейная связь между твердостью и прочностью материала:

для сталей и алюминиевых сплавов- sв= 0,35 НВ ;

для медных сплавов - sв= 0,45 НВ .

Диаметр шарика D выбирается в зависимости от толщины h детали: D = 2,5 мм - h < 3 мм;

D = 5 мм - h = 3 …6 мм;

D = 10 мм - h > 6 мм.

Значение нагрузки P ( в кгс) зависит не только от диаметра шарика D, но и от материала детали. Для более твердых материалов необходима большая нагрузка, поэтому в нижеприведенных формулах коэффициент для стали (30) больше, чем для более мягких материалов (10- для бронзы и латуни; 2.5- для олова):

P = 30 D2 — сталь, чугун;

P = 10 D2 — бронза, латунь;

P = 2,5 D2 —олово, свинец и другие мягкие металлы.

Кристаллическое строение металлов. - student2.ru

 
  Кристаллическое строение металлов. - student2.ru

Примеры обозначения твердости по Бринеллю: 185НВ, 200НВ, 86НВ. Чем больше цифра, тем больше твердость материала (200НВ > 86НВ).

Твердость металлов по Виккерсу ( рис. 1.11) определяется аналогично как и по Бринеллю, но вместо шарика используется алмазная 4-х гранная пирамида:

HV = P / F = 1,8544 P / d 2 , кгс /мм2,

где F, d — поверхность и диагональ отпечатка;

Р- нагрузка на пирамидку, кгс .

Диагональ d определяется с помощью микроскопа, вмонтированного непосредственно в прибор. Этот способ используется для небольших деталей и при научных исследованиях. Значения твердости материалов, определенных по Брюнеллю (НВ) и Виккерсу (HV) совпадают. Примеры обозначения

 
  Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru

твердости по Виккерсу: HV180, HV 295.

При определении твердости по Роквеллу (рис. 1.12) в испытываемый металл вдавливается алмазный конус ( угол конуса 120 ° ) или стальной закаленный шарик диаметром 1,6 мм под определенной нагрузкой: сначала предварительной Р = 10 кгс, далее основной - 60, 100 или 150 кгс. На приборе имеются три шкалы А , В и С для отчета соответствующей твердости HRА, HRВ и HRC. Число твердости по Роквеллу характеризует глубину внедрения индентора ( шарика или конуса) под определенной нагрузкой ( 60, 100 или 150 кгс). Твердость HRC, HRА, HRВ определяется по формулам, соответствующим режимам ее определения ( вид индентора и величина нагрузки) :

HRC=100 –e (алмазный конус, Р= 150 кгс);

HRА=100 –e (алмазный конус, Р= 60 кгс);

HRВ=130 –e ( шарик, Р= 100 кгс),

в которых e = 0,002 h2 » 0,002 (h1-h0).

Следовательно, твердость по Роквеллу это безразмерная величина, единица которой соответствует глубине перемещения индентора на 0,002 мм. Примеры обозначения твердости по Роквеллу: 47HRC, 23HRC, 30HRC, 80HRA, 30HRB.

 
  Кристаллическое строение металлов. - student2.ru

В обозначении твердости показаны ее значение и режим определения (алмазный конус или шарик; нагрузка: 60,100. или 150 кгс). Для сравнения твердость шейки коленчатого вала дизельного двигателя (47…52HRC ) значительно выше твердости поршневого пальца (30…32HRC).

Испытание образцов (рис. 1.13) на растяжение (рис.1.14) проводится на разрывных машинах при плавно возрастающей растягивающей нагрузке. Образцы изготовляются круглого или квадратного сечения. Величину силы , действующей в поперечном сечении образца, пересчитывают в значение напряжения , выражаемое в ньютонах (или килограммах) на квадратный миллиметр. При малых нагрузках (соответственно и малых напряжениях) остаточная деформация не возникает и образец после снятия нагрузки принимает начальную длину, т.е. он ведет себя упруго. В области 0…А упругой деформации последняя прямо пропорциональна напряжению, т. е. если напряжение возрастает вдвое, то и упругая деформация возрастает вдвое. Начальный участок диаграммы представляет собой прямую линию. Крутизна этого участка ( отношение напряжения к деформации) является характеристикой металла- модулем упругости Юнга ( модулем Е).

 
  Кристаллическое строение металлов. - student2.ru

На участке (Б…В) текучести образец удлиняется при неизменной нагрузке Р. При снятии нагрузки в этом интервале (Б…В) образец не возвращается к начальной длине, а становится длиннее – в соответствии с той долей, какую составила пластическая деформация от общей. На участке Б…В происходит упрочнение материала и , как следствие этого, после точки В происходит увеличение длины образца с ростом растягивающей нагрузки. Далее нагрузка растет до максимальной Рв, после которой происходит местное сужение образца, образуется «шейка». Дальше размер шейки увеличивается, растягивающая нагрузка уменьшается, но и сечение тоже, и в точке К происходит разрыв образца.

Кривая растяжения позволяет определить несколько важнейших характеристик металла. В первую очередь это предел прочности на разрыв (растяжение) sв, т.е. максимальное напряжение, которое выдерживает образец без образования шейки , относительное удлинение d.

Условным пределом текучести s0,2 называется напряжение, при котором удлинение образца составляет 0,2 % расчетной длины.

Предел прочности при растяжении определяется из соотношения:

sв = Рв / Fo, кгс / мм2 ,

где Fo- начальная площадь поперечного сечения образца, мм2,

Рв — нагрузка предела прочности при растяжении , кгс.

Истинным сопротивлением разрыва sz называют напряжение , соответствующее отношению нагрузки в момент разрыва к площади сечения образца в месте разрыва:

sz = Pz / Fk ,

где Fk — конечная площадь поперечного сечения образца.

Пластичность — это изменение размеров образца без нарушения сплошности материала.

Относительное удлинение d находится по формуле (в %) :

d= 100 ( Lк - L0) / L0,

где L0, Lк — длина образца до и после разрыва.

Относительное сужение y (в % ) представляет собой отношение :

y = 100 ( Fo - Fk ) / Fo .

Из первоначального участка кривой находится модуль упругости материала Е. По закону Гука

s = P / Fo = E ´ DL / L0.

Значения модуля упругости можно определить геометрически как тангенс угла наклона a начального участка диаграммы растяжения :

Е = tga

Кристаллическое строение металлов. - student2.ru Во многих случаях нас интересует не просто абсолютные значения прочности, а удельная прочность, т.е. отношение прочности к плотности g ( удельному весу ) материала (табл. 1.2).

Таблица 1.2

Сравнительные характеристики прочности и жесткости различных материалов.

Материал Прочность, sв, кгс / мм2 Удельная прочность, sв/g ´ 105 Удельная жесткость, (E / g) 1/3
Конструкционная сталь 450…1100 6…15 -
Легированная сталь 1100…1400 15…19 3,3…3,5
Высокопрочная сталь 1800…2000 22…25 -
Алюминиевый сплав 420…600 16…21 6,8…6,9
Титановые сплавы 1200…1400 26…40 4,8…5,1
Стеклопластики > 700 38…50 7…7,2

Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru

Способность противостоять металла ударным нагрузкам определяется при испытаниях на удар (рис. 1.15). Для этого изготовляется специальный образец. В середине его делается надрез, необходимый для того, чтобы разрушение происходило в самом слабом месте, т.е. в месте надреза, установленном напротив ударного устройства маятникового копра .

Работа Ан на разрушение образца определяется как разность потенциальной энергии груза перед испытанием (Р´ Н ) и оставшейся потециальной энергией (Р ´h) после разрушения образца:

Ан = Р ( Н - h ).

Ударная вязкость aн представляет собой удельную работу на разрушение единицы площади образца :

aн = Ан / Fo,

где Fo - площадь поперечного сечения образца в месте надреза.

 
  Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru

Динамические испытания позволяют выявить склонность металлов к хрупкому разрушению (рис. 1.16). По количеству волокна в изломе (визуально по матовой волокнистой составляющей ) оценивают вид излома: вязкий излом ( 90 % волокон), хрупкий излом (только 10 % волокон) и смешанный излом.

За порог хладноломкости (очень важная характеристика металла, особенно для природно-климатических условий Тюменской области) принимают температуру, при которой имеется около 50% волокна , что примерно соответствует значению ½aн. Для ответственных деталей критической температурой хладноломкости считают температуру, при которой будет 90 % волокон .Значение ударной вязкости aн не является постоянной величиной , а сильно зависит от его структуры, условий испытания, наличия концентраторов напряжений и др.

Усталостные испытания

В реальных условиях эксплуатации нагрузки на некоторые детали меняются как по величине, так и по направлению, вследствие этого возникают микротрещины в металле, далее они развиваются и при относительно небольших нагрузках происходит разрушение металла (поломка детали). Коленчатые валы, шатуны, шестерни, рессоры, пружины и многие другие детали выходят из строя чаще всего по этим причинам.

Кристаллическое строение металлов. - student2.ru Кристаллическое строение металлов. - student2.ru На рис. 1.17 показан консольный вал, при вращении которого на участках галтели нагрузка за один оборот будет изменяться от максимальной до нуля. В результате многократно повторяющихся циклов нагружения в самом опасном месте (галтели) сначала образуются отдельные микротрещины, далее они увеличиваются по размеру и сливаются друг с другом, образуя большего размера трещины, и при относительно небольших нагрузках ( по сравнению с начальными условиями работы) происходит разрушение вала по галтели.

На рис. 1.18. показана кривая усталости. При испытаниях определяют число циклов нагружения до разрушения образца металла при различных напряжениях. Напряжение s-1 называется пределом усталости, т.е. это значение такого напряжения при котором нет усталостного разрушения. Обычно испытания не проводят до появления этого горизонтального участка, а завершают для стальных образцов при 5 ´ 106 циклов и для образцов из цветных сплавов при большем (20´ 106) числе циклов.

Пределом усталости в этом случае называют предельное напряжение при котором образец не разрушается при этом установленном количестве циклов.

Исследование структуры металлов проводят несколькими способами. Рентгеноструктурным методом исследуют внутреннее строение кристаллической решетки (фазовый состав, величину зерен и т. д). При просвечивании ультразвуком или рентгеновскими лучами определяют качество литья и сварки по наличию трещин, шлаковых включений и раковин.

Макроструктура металла (величина зерен, направление волокон в деформированных слоях металла, наличие усадочных и газовых трещин, характер излома детали) определяется невооруженным .глазом или при увеличении (лупа, микроскоп) до 30 раз. Поверхность сначала шлифуют наждачной бумагой , а потом проводят глубокое травление химическими растворами .

При микроскопическом исследовании используют микроскопы с увеличением в 50 …2000 раз. Шлифы металла готовятся в виде цилиндриков (диаметром и высотой по 10… 15 мм), или в виде кубиков 10´10 мм. Металл шлифуют, полируют и травят в слабых растворах кислот. На поверхности металла из - за неодинаковой травимости структурных составляющих, зерен и их границ появляется микрорельеф. Создается сочетание света и тени. Более протравленная структура будет более темной в микроскопе по сравнению с менее протравленной.

Технологические испытания - это простейшие виды испытания материалов на пластичность и разрушение, на возможность ковки, гибки , сварки и др.

Так, испытанием на выдавливание определяется способность листового материала подвергаться холодной штамповке. Пуансоном ( шариком ) выдавливаются лунки до появления первой трещины. Глубина лунки до разрушения характеризует пластичность материала.

Испытанием на изгиб листового материала в холодном и горячем состоянии определяется его способность принимать заданную форму. Испытанием на изгиб оценивается качество сварных швов. Характеристикой прочности является угол прогиба до разрушения сварного шва. Проба на двойной кровельный замок. проводится для листового металла толщиной менее 0,8 мм. Оценивается угол загиба, число загибов и разгибов.

Пробой на перегиб ( повторный загиб и разгиб ) оценивается качество проволоки. Пробы на изгиб и расплющивание проводятся для труб диаметром менее 115 мм; отверстие засыпается сухим песком, далее труба гнется на 90 градусов вокруг оправки.

Испытанием на осадку в холодном состоянии проверяются материалы для изготовления .болтов и заклеп.

Проба навиванием проволоки на оправку проводится для определения возможности получения заданного числа витков.

Разливка стали.

 
  Кристаллическое строение металлов. - student2.ru

Из печи сталь выпускают в сталеразливочный ковш ( 5 …250 тн). В основном применяются два традиционных способа разливки ( рис.1.23) в изложницы (чугунные формы) : сверху и сифонная снизу. Сверху — это для крупных слитков, снизу — для мелких.

Очень эффективна непрерывная разливка стали (рис. 1.24). Расплавленная сталь через регулируемый стакан непрерывно поступает в водоохлаждаемый кристаллизатор. Дальнейшее охлаждение проводится струями воды, после этого выполняется прокатка слитка валками . С помощью кислородного резака отрезается необходимой длины слиток. Слитки изготовляются прямоугольного (150´500,300 ´200,…), квадратного (150´150, 400´400,…) или круглого сечения. В слитке непрерывной разливки нет усадочной раковины и более равномерная структура металла.

Стали делятся на :кипящие, спокойные и полуспокойные. Кипящая сталь не полностью раскислена в печи и раскисляется в изложнице. При разливке кипящих сталей выделяется окись углерода СО , поэтому создается внешнее впечатление , что сталь как бы «кипит» в изложнице

Кристаллическое строение металлов. - student2.ru FeO + C ® Fe + CO ­.

Кристаллическое строение металлов. - student2.ru
Окись углерода СО при выходе из стали способствует удалению N, H и поэтому создается впечатление «кипящей» стали. В стали при затвердении слитка образуется не усадочная раковина, а большое количество газовых пузырей, устраняемых прокаткой.

Спокойные стали получаются при полном раскислении в печи. В верхней части слитка при разливе спокойной стали будет усадочная раковина, а у кипящих сталей ее нет.

Полуспокойная сталь получается при недостаточном количестве ферросилиция или алюминия.

Качество выплавляемой стали определяется:

Качеством исходных материалов (чугуна, шлаков, металлолома) .

Совершенством технологического процесса плавки .

Технологической дисциплиной плавки.

Технологией разливки.

При разливке может проводиться вакуумная обработка в ковше или электропечи в течение 10…15 минут. Газы всплывают на поверхность металла, захватывая неметаллические шлаковые и другие включения, поэтому металл имеет высокую чистоту и ,соответственно, высокое качество.

Для повышения качества металла применяются следующие виды переплава: электрошлаковый ,вакуумно-дуговой, плазменно-дуговой и электронно-лучевой.

Прокатка металлов.

До 90 % сталей и до 50 % цветных металлов используются в виде проката,, штампованных, кузнечных заготовок (рис. 1.39) . Достоинство процесса прокатки в высокой экономичности: мало потерь металла, т .к. происходит перераспределение металла по объему, а при обработке резанием много металла идет в стружку; процесс высокопроизводительный; прокат эффективно использовать для изготовления сварных и клепанных конструкций и конструктивно сложных и громоздких деталей.

 
  Кристаллическое строение металлов. - student2.ru

Деформация может быть холодная и горячая. В последнем случае снижается усилие деформации, но обезуглераживается поверхностный слой и образовывается окалина.

На улучшение пластичности металла влияют :

1. Химический состав. Так при содержании углерода свыше 0,15 % сталь уже трудно ковать. Легирующие добавки кремния, хрома и вольфрама снижают пластичность, а никеля и молибдена, наоборот, -повышают. Для изготовления деталей холодной листовой штамповкой с глубокой вытяжкой применяется кипящая малоуглеродистая сталь ( 08кп, 10кп,… ) с малым содержанием кремния .

2. Температура металла.

3. Скорость деформации; с увеличением ее пластичность падает.

Прокатные станы разделяются на обжимные, заготовительные, сортовые, полосовые, проволочные, листовые, трубопрокатные и специального назначения (рис.1.40) .

Крупный по размерам слиток на обжимных .станах ( блюмингах и слябингах) делится на более мелкие слитки: блюмы квадратного сечения (250 r 250 мм,…) или прямоугольного ( 300 r 400 мм,…) получают на блюмингах, а слябы (заготовки для листового проката) шириной 400… 2500 мм и высотой 75… 600 мм. – на слябингах. Диаметр валков этих станов от 800 до 1500 мм, на них получают заготовки весом 2 …35 т для других станов

 
  Кристаллическое строение металлов. - student2.ru

У слябинга, в отличие от блюминга, есть дополнительные вертикальные валки для обжатия слитка на ширине.

 
  Кристаллическое строение металлов. - student2.ru

На заготовительных станах получают из блюмов необходимый сортамент проката. Для прокатки листовой стали используются гладкие валки, а на калиброванных валках более сложной формы изготовляются остальные виды проката. На калиброванных валках имеются канавки (выступы) –ручьи. Совокупность ручьев пары валков называется калибром, На прокатных станах используются различные (рис.1.41.) виды калибров. Калибровка валков — это разработка схемы прокатки и такое последовательное по длине прокатки размещения калибров, при котором металл проходит через большое количество калибров, в каждом происходит его деформация , а в результате последовательного воздействия на металл обеспечивается получение заданного профиля проката.

Сортамент проката.

Сортовая сталь :n -круглая (диаметром 5…250 мм); g -квадратная (5 …250 мм); шестигранная (6…100 мм); y- полосовая (шириной 10… 200 и толщиной 4 ...60 мм): d - угловая сталь (табл. 1.10); лента, проволока; [- швеллера, I- двутавры, рельсы.

2. Листовая сталь (тонколистовая до 4 мм толщиной и толстолистовая -более 4мм ).

3. Специальные виды проката ( колеса, периодические профили, арматурная сталь, гнутые профили и др. ).

4. Стальные трубы (бесшовные и сварные).

Таблица 1.10.

Размеры профилей стали угловой равнополочной

Ширина полок, мм Толщина полки, мм Ширина полок , мм Толщина полок, мм
3 и 4
÷ 4,5 и 6
÷ ÷
÷ ÷
÷    
÷ ÷
3,4 и 5 6,7,8 и 9
÷  

По точности прокатки изготовляют сталь угловую высокой ( обозначается индексом А) и — обычной точности ( индекс Б) .

Пример обозначения стали угловой:

 
  Кристаллическое строение металлов. - student2.ru

Б - 50 х 50 х 3 ГОСТ 8509- 86

Ст3сп ГОСТ 535 - 79

Расшифровывается , как сталь угловая равнополочная, с шириной полок 50 мм и толщиной 3 мм, обычной точности прокатки по ГОСТ 8509- 86 , изготовленная из стали обыкновенного качества группы А, марки Ст3сп по ГОСТ 535 - 79, спокойной .

Сталь угловая неравнополочная может быть размеров: 25 х 16 х 3, 32 х 20 х 3, 40 х 25 х 4 (3) ,….100 х 63 х 6(7, 8 или 9). Пример обозначения:

 
  Кристаллическое строение металлов. - student2.ru

А - 63 х 40 х 4 ГОСТ 8510 – 86

Ст2сп ГОСТ 535 - 79

Расшифровывается, как сталь угловая, неравнополочная, с шириной полок 63 и 40 мм и толщиной 4 мм, повышенной точности прокатки ( см. индекс А) по ГОСТ 8510 – 86, изготовленная из стали обыкновенного качества группы А, марки Ст 2сп по ГОСТ 535 – 79, спокойной.

Швеллеры и двутавровые балки (табл. 1.11 ) различаются по номерам, причем номер профиля указывает на высоту в сантиметрах швеллера (двутавровой балки).

Таблица 1.11

Размеры швеллеров и балок двутавровых.

Номер профиля Высота, мм Ширина, мм Толщина, мм
Швеллеры
6,5 4,4
6,5 4,4
4,5
4,5
4,8
4,9
…. …. ….
5,4
5,6
Балки двутавровые
4,5
4,8
4,9
…. …. ….
5,4

Толстолистовую сталь изготовляют из слябов массой до 2 тн. Сначала раскатывают сляб в поперечном направлении до получения необходимой ширины, а затем раскатывают вдоль.. На стане имеются нормализационная печь, травильная установка и сушильная машина.

Тонколистовую сталь выпускают в листах и рулонах. После травления рулоны поступают на станы холодной прокатки, где проводится лужение (горячее и электролитическое), или цинкование, или нанесение пластмассового покрытия.

Стальные трубы по способу изготовления делятся на бесшовные (цельнотянутые) и шовные (сварные). Шовные трубы могут быть: прямошовными и спиральношовными, однослойными ( традиционная технология) и многослойными (перспективная технология). Сварные трубы дешевле цельнотянутых, но они менее надежны. Сварные трубы изготовляют диаметром от 10 до 2500 мм, а цельнотянутые - до 100 мм.

Технология изготовления бесшовных (цельнотянутых) труб.

 
  Кристаллическое строение металлов. - student2.ru

Круглый или граненый слиток диаметром 250… 600 мм и массой 0,6 …3 т прошивается на прошивочном стане (рис. 1.42). Валки (грибовидной или дисковой формы) установлены под углом 9 …14 º друг к другу. Заготовка продавливается через оправку, а из - за растягивающих напряжений ,создаваемых вращающимися валками, происходит течение металла от центра слитка и за счет этого без больших усилий происходит прошивка отверстия.

 
  Кристаллическое строение металлов. - student2.ru

Далее проводится раскатка полученной гильзы тоже на оправке ( рис. 1.43) , в результате уменьшаются внутренний и наружный диаметры и увеличивается длина заготовки. Прокатку выполняют за два прохода с поворотом трубы на 90 °. Получают трубу диаметром свыше 57 мм. На третьем этапе получения трубы дальнейшее уменьшение их диаметров ведут в непрерывных станах уже без оправки.

Сварные трубы изготовляются диаметром до 2500 мм. Они дешевле бесшовных, но менее надежны и прочны. Сначала проводится формовка плоской заготовки в трубу, далее сваривается стык трубы, проводится отделка и правка. Заготовка изготовляется в виде ленты или берутся листы, шириной равные длине трубы. Сваривание проводят способами: электродуговой под слоем флюса, электроконтактной сопротивлением, кузнечной (печной) .

Кристаллическое строение металлов. - student2.ru При непрерывной печной сварке проводится нагрев заготовки до 1300 …1350 °С, стык обдувается кислородом или воздухом и металл разогревается до расплавления и проводится кузнечная сварка стыка кромок трубы сжатых роликами непрерывого стана.

При электроконтактной сварке (рис. 1.44) заготовка поступает в трубоэлектросварочный стан и сжимается. Стык разогревается электрическим током низкого напряжения (6…10 В ) ., подаваемом через сварочные ролики, и при охлаждении сваривается.

Волочение металла-это процесс протягивания проволоки, прутка или трубы через очко специнстумента (волоку). В итоге получаются точные размеры, чистая и гладкая поверхность. Перед волочением металл очищают от окалины промывают, наносят подсмазочный слой (омеднение, фосфатирование и т.д.), сушат и наносят слой смазки (графит, эмульсии, минеральные масла).

Прессование металла используется чаще всего для цветных сплавов: можно получить прутки диаметром 5… 200 мм, трубы до 800 мм диаметром с толщиной стенок 1,5 … 8 мм, фасонные профили. Нагретый металл из контейнера выдавливается через очко матрицы. При прессовании труб заготовка прошивается стальной иглой, конец которой проходит через очко; металл выпрессовывается .между иглой и очком.

Ковка и штамповка — промежуточные операции для изготовления заготовок деталей на пневматических, гидравлических или механических прессах. Механические свойства кованных и штампованных изделий выше, чем у полученных механической обработкой, т.к. в этом случае волокна перераспределяются в соответствии с формой деталей. Штамповка может быть горячая и холодная. Объемная штамповка проводится в штампах, где течение металла ограничено поверхностями штампа. По сравнению со свободной кузнечной ковкой объемная штамповка в 50…100 раз производительнее , получается выше качество и прочность поковок, имеется возможность получения поковок сложной формы. В автомобилестроении листовой штамповкой получают до 75 % деталей, а при производстве товаров широкого потребления - до 98 %.

Сварка металлов.

Сварка является одним из ведущих технологических процессов изготовления и упрочнения деталей , изготовления строительных конструкций, трубопроводов и судов, ремонта деталей и конструкций. Эффективно использование технологических приемов сварки и при резке металлов.

Исторически сварка известна человечеству со времен использования, меди, серебра, золота и , особенно, железа, при получении которого выполнялась проковка , т.е. сваривание криц (кусочков технически чистого железа) . Это и есть первый способ сварки -кузнечная сварка металла.

Наиболее распространена в производстве электродуговая сварка, явл

Наши рекомендации