Классификация и маркировка цветных металлов и сплавов

Медь и её сплавы.

Технически чистая медь обладает высокими пластичностью и коррозийной стойкостью, малым удельным электросопротивлением и высокой теплопроводностью. По чистоте (процентному содержанию меди и серебра) медь подразделяют на марки:

Марка МВЧ MOO МО Ml М2 МЗ
Содержание Cu+Ag, не менее % 99,993 99,99 99,95 99,9 99,7 99,5

Медь хорошо обрабатывается давлением, удовлетворительно - резанием.

Область применения чистой меди:

- электротехническая промышленность (электрические провода);

- высокая теплопроводность меди позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления;

- медные трубы применяются для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах.

Медные сплавы разделяются на латуни и бронзы.

Латуни - сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца. По сравнению с чистой медью латуни обладают более высокой прочностью и коррозионной стойкостью. Все латуни, за исключением свинцовосодержащих, легко поддаются обработке в холодном и горячем состоянии.

Бронзы - это сплавы меди с оловом (4 - 33% Sn), свинцом (до 30% Pb), алюминием (5-11% Al), кремнием (4-5% Si), сурьмой и фосфором. Если в состав бронзы входит олово, бронзы называются оловянными бронзами. Если бронза не содержит олова, бронзы называются безоловянными. По сравнению с латунью бронзы обладают более высокой прочностью, коррозионной стойкостью и антифрикционными свойствами. Большинство бронз (за исключением алюминиевых) хорошо поддаются сварке и пайке.

Медные сплавы разделяют на деформируемые и литейные. Сплавы, предназначенные для изготовления заготовок и деталей методами литья, называют литейными, а сплавы, применяемые для изготовления заготовок и деталей обработкой давлением - деформируемыми.

Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие количество элемента в процентах. Приняты следующие обозначения компонентов сплавов:

А – алюминий Мц - марганец С - свинец Б - бериллий

Мг – магний Ср – серебро Ж - железо Мш - мышьяк

Су – сурьма К – кремний Н – никель Т – титан

Кд – кадмий О – олово Ф – фосфор Х – хром

Ц - цинк

Например:

- БрА9Мц2Л - бронза, содержащая 9% алюминия, 2% Mn, остальное Cu ("Л"' указывает, что сплав литейный);

- ЛЦ40Мц3Ж - латунь, содержащая 40% Zn, 3% Mn, ~l% Fe, остальное Cu;

- Бр0Ф8,0-0,3 – бронза, содержащая 8% олова, 0,3% фосфора, остальное Cu;

- ЛАМш77-2-0,05 - латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).

В простых по химическому составу латунях указывают только содержание в сплаве меди (остальное до 100% Zn), например:

- Л96 - латунь содержащая 96% Cu и ~4% Zn (томпак);

- Лб3 - латунь содержащая 63% Cu и -37% Zn.

Основные отличия между латунью и бронзой:

- бронза получается при сплавлении меди с оловом, а латунь — меди с цинком;

- бронза может контактировать с морской водой, а латуни для этого нужно дополнительное легирование;

- бронза более прочная и износостойкая;

- бронза отличается темно-коричневым цветом и крупнозернистостью, тогда как латунь желтая и мелкозернистая.

Медные сплавы обладают хорошими антикоррозионными и антифрикционными свойствами.

Основные области применения латуни:

- антифрикционные детали;

- коррозионностойкие детали, применяемые в судостроении и машиностроении;

- подшипники и втулки.

Основные области применения бронзы:

- детали нефтяной, химической аппаратуры и криогенной техники;

- антифрикционные детали, вкладыши подшипников;

- электроды контактной точечной и шовной сварки

- детали высокой электропроводности и жаропрочности;

- детали, работающие в среде соляной кислоты и сероводорода при температуре 30-90°С; - - арматура для работы в пресной воде, жидком топливе, паре, морской воде.

Медно-никелевые сплавы выделяются в особую группу. Эти сплавы разделяют на:

- конструкционные: мельхиор МНЖМц 30-1-1 и МН19, нейзильбер 20 МНЦ 15-20 (посуда и украшения);

- электротехнические: константан МНМц 40-45 (нагревательные элементы), копель МНЦ 43-05 (производство электроизмерительных приборов).

Алюминий и его сплавы.

Алюминий - легкий металл, обладающий высокими тепло- и электропроводностью, стойкостью к коррозии. В зависимости от степени чистоты различают алюминий особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% алюминия; буква "Е" обозначает повышенное содержание железа и пониженное кремния.

Например:

- А999 - алюминий особой чистоты, в котором содержится не менее 99,999% алюминия;

- А5 - алюминий технической чистоты в котором 99,5% алюминия.

Алюминий и алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой.

Чистый деформируемый алюминий обозначается буквами "АД" с указанием степени его чистоты, например: АДоч (≥99,98% Al), АД000(≥99,80% Аl), АД0(99,5% Аl), АД1 (99,30% Al), АД(≥98,80% Аl).

Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. К деформируемым алюминиевым сплавам, не упрочняемым термообработкой, относятся сплавы системы Al-Mn и Al -Mg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы входящих в состав сплава компонентов и цифры, указывающие содержание этих легирующих элементов в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы Al-Cu-Mg (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного химического состава. Дуралюмины маркируются буквой "Д" и порядковым номером, например: Д1, Д12, Д18, АК4, АК8.

Литейные алюминиевые сплавы обладает хорошей жидкотекучестью, имеют сравнительно малую усадку и предназначены в основном для фасонного литья. Эти сплавы маркируются буквами "АЛ" с последующим порядковым номером, например: АЛ2, АЛ9, АЛ13, АЛ22, АЛЗО. Иногда маркировка осуществляется по химическому составу сплава, например: АК7М2; АК21М2, 5Н2,5; АК4МЦ6. В этом случае "М" обозначает медь, "К" - кремний, "Ц" - цинк, "Н" - никель; цифра - среднее % содержание элемента.

Алюминиевые сплавы обладают малой плотностью (малый вес), высокой коррозийной стойкостью.

Основные области применения чистого алюминия:

- электрическая промышленность - проводники электрического тока в воздушных электросетях (электропроводность алюминия составляет 65, 5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь);

- пищевая промышленность (посуда, фольга, используемая как упаковочный материал);

. - порошковый алюминий используется как горючее в твёрдых ракетных топливах;

- электроника (детали электрических конденсаторов, выпрямителей).

Основные области применения алюминиевых сплавов:

- авиа-, судо- и вагоностроение (элементы корпусов и обшивки, трапы, лестницы, дымовые трубы, палубные надстройки, части двигателей малых и крупных судов);

- машиностроение (корпуса двигателей, крыльчатки насосов, корпуса приборов, блоки двигателей внутреннего сгорания, поршни, головки и рубашки цилиндров поршневых двигателей);

- приборостроение (корпуса и комплектующие части для различного оборудования, радиаторы для холодильной техники и обогревательных приборов);

- строительство (балки, перекрытия, колонны, перила, ограждения, элементы вентиляционных систем, уголки, швеллеры, оконный и дверной профиль);

- автомобилестроение (детали кузовов, бамперы).

В промышленности используются также алюминиевые антифрикционные сплавы. Такие сплавы маркируют буквой "А" и начальными буквами входящих в них элементов, например: А09-2, А06-1, АН-2,5, АСМТ. Первые два сплава содержат олово и медь (первая цифра-олово, вторая-медь в %), третий 2,7-3,3% никеля и четвертый – медь, с

Основные области применения алюминиевых антифрикционных сплавов.

Из этих сплавов изготовляют подшипники и вкладыши как литьем, так и обработкой давлением.

Титан и его сплавы.

Титан - тугоплавкий металл с невысокой плотностью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей, поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40%. Титан хорошо обрабатывается давлением, сваривается, из него можно изготовить сложные отливки, но обработка резанием затруднительна. Для получения сплавов с улучшенными свойствами титан легируют алюминием, хромом, молибденом.

Титан и его сплавы маркируют буквами "ВТ" и порядковым номером:

ВТ1-00, ВТЗ-1, ВТ4, ВТ8, ВТ14.

Пять титановых сплавов обозначены иначе:

0Т4-0, 0Т4, 0Т4-1, ПТ-7М, ПТ-3В.

Титановые сплавы разделяются на литейные и деформируемые. Наиболее известны литейные сплавы ВТ1Л, ВТ5Л, ВТ9Л. Сплав ВТ1Л обладает наибольшей химической стойкостью. Сплав ВТ5Л применяют для деталей, работающих в диапазоне температур от -253ºС до +350ºС. Сплав ВТ9Л наиболее высокопрочный, предназначен для изготовления деталей, работающих при температуре до +500ºС.

Титановые сплавы обладают высокой прочностью, жаростойкостью, коррозионной стойкостью и малой плотностью (малый вес).

Основные области применения чистого титана:

- электровакуумная промышленность (изготовление деталей электронного оборудования).

Основные области применения титановых сплавов:

-авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);

- химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);

- морское и речное судостроение (гребные винты, обшивка морских судов, корпуса подводных лодок);

- криогенная техника (высокая ударная вязкость, характеризующая пластичность, сохраняется до –253oС) - детали холодильников, насосов компрессоров.

Магний и его сплавы.

Среди промышленных металлов магний обладает наименьшей плотностью (1700 кг/м3). При повышении температуры магний интенсивно окисляется и даже самовоспламеняется. Он обладает малой прочностью и пластичностью. Для повышения химико-механических свойств магния в него вводят алюминий, цинк, марганец и другие легирующие добавки. В результате легирования магния получают магниевые сплавы.

Магниевые сплавы подразделяют на деформируемые и литейные. Первые маркируются буквами "МА", вторые "МЛ". После букв указывается порядковый номер сплава в соответствующем ГОСТе.

Например:

МА1-деформируемый магниевый сплав №1;

МЛ19-литейный магниевый сплав №19

Магниевые сплавы отличаются малой плотностью (малый вес), способностью воспринимать ударные нагрузки и низкой коррозийной и химической стойкостью.

Основные области применения чистого магния:

- детали электробатарей, сухих элементов питания;

- медицина (соли магния используются для лечения широкого спектра заболеваний);

- металлургия (магний служит для восстановления ценных видов металлов – циркония, ванадия, титана и хрома, а также для раскисления стали и легирования чугуна).

Основные области применения сплавов магния:

- автомобилестроение - каркасы сидений, панели приборов, педали и т.д. (важен малый вес деталей);

- детали пневматического оборудования – отбойных молотков и пневмобуров;

- комплектующие для фото- и видеотехники;

- детали авиационной и ракетной техники (важен малый вес деталей).

Магнитные материалыподразделяются на магнитомягкие (коэрцитивная сила* Нс < 800 А/м ) и магнитотвёрдые ( Нс > 4 А/м).

Основные области применения магнитных материалов.

- магнитомягкие материалы (чистое железо) - производство магнитопроводов (сердечники трансформаторов, якоря и статоры электродвигателей, электромагнитов);

- магнитотвёрдые материалы, выпускаемые на основе сплавов Fe-Ni-Al (сплавы ЮНД) и Fe-Ni-Co-Al (сплавы ЮНДК) - изготовление постоянных магнитов в радиотехнике.

* Коэрцитивная сила – напряжение магнитного поля, необходимое для полного размагничивания предварительно намагниченного материала.

Наши рекомендации