Классификация и маркировка цветных металлов и сплавов
Медь и её сплавы.
Технически чистая медь обладает высокими пластичностью и коррозийной стойкостью, малым удельным электросопротивлением и высокой теплопроводностью. По чистоте (процентному содержанию меди и серебра) медь подразделяют на марки:
Марка | МВЧ | MOO | МО | Ml | М2 | МЗ |
Содержание Cu+Ag, не менее % | 99,993 | 99,99 | 99,95 | 99,9 | 99,7 | 99,5 |
Медь хорошо обрабатывается давлением, удовлетворительно - резанием.
Область применения чистой меди:
- электротехническая промышленность (электрические провода);
- высокая теплопроводность меди позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления;
- медные трубы применяются для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах.
Медные сплавы разделяются на латуни и бронзы.
Латуни - сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца. По сравнению с чистой медью латуни обладают более высокой прочностью и коррозионной стойкостью. Все латуни, за исключением свинцовосодержащих, легко поддаются обработке в холодном и горячем состоянии.
Бронзы - это сплавы меди с оловом (4 - 33% Sn), свинцом (до 30% Pb), алюминием (5-11% Al), кремнием (4-5% Si), сурьмой и фосфором. Если в состав бронзы входит олово, бронзы называются оловянными бронзами. Если бронза не содержит олова, бронзы называются безоловянными. По сравнению с латунью бронзы обладают более высокой прочностью, коррозионной стойкостью и антифрикционными свойствами. Большинство бронз (за исключением алюминиевых) хорошо поддаются сварке и пайке.
Медные сплавы разделяют на деформируемые и литейные. Сплавы, предназначенные для изготовления заготовок и деталей методами литья, называют литейными, а сплавы, применяемые для изготовления заготовок и деталей обработкой давлением - деформируемыми.
Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие количество элемента в процентах. Приняты следующие обозначения компонентов сплавов:
А – алюминий Мц - марганец С - свинец Б - бериллий
Мг – магний Ср – серебро Ж - железо Мш - мышьяк
Су – сурьма К – кремний Н – никель Т – титан
Кд – кадмий О – олово Ф – фосфор Х – хром
Ц - цинк
Например:
- БрА9Мц2Л - бронза, содержащая 9% алюминия, 2% Mn, остальное Cu ("Л"' указывает, что сплав литейный);
- ЛЦ40Мц3Ж - латунь, содержащая 40% Zn, 3% Mn, ~l% Fe, остальное Cu;
- Бр0Ф8,0-0,3 – бронза, содержащая 8% олова, 0,3% фосфора, остальное Cu;
- ЛАМш77-2-0,05 - латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).
В простых по химическому составу латунях указывают только содержание в сплаве меди (остальное до 100% Zn), например:
- Л96 - латунь содержащая 96% Cu и ~4% Zn (томпак);
- Лб3 - латунь содержащая 63% Cu и -37% Zn.
Основные отличия между латунью и бронзой:
- бронза получается при сплавлении меди с оловом, а латунь — меди с цинком;
- бронза может контактировать с морской водой, а латуни для этого нужно дополнительное легирование;
- бронза более прочная и износостойкая;
- бронза отличается темно-коричневым цветом и крупнозернистостью, тогда как латунь желтая и мелкозернистая.
Медные сплавы обладают хорошими антикоррозионными и антифрикционными свойствами.
Основные области применения латуни:
- антифрикционные детали;
- коррозионностойкие детали, применяемые в судостроении и машиностроении;
- подшипники и втулки.
Основные области применения бронзы:
- детали нефтяной, химической аппаратуры и криогенной техники;
- антифрикционные детали, вкладыши подшипников;
- электроды контактной точечной и шовной сварки
- детали высокой электропроводности и жаропрочности;
- детали, работающие в среде соляной кислоты и сероводорода при температуре 30-90°С; - - арматура для работы в пресной воде, жидком топливе, паре, морской воде.
Медно-никелевые сплавы выделяются в особую группу. Эти сплавы разделяют на:
- конструкционные: мельхиор МНЖМц 30-1-1 и МН19, нейзильбер 20 МНЦ 15-20 (посуда и украшения);
- электротехнические: константан МНМц 40-45 (нагревательные элементы), копель МНЦ 43-05 (производство электроизмерительных приборов).
Алюминий и его сплавы.
Алюминий - легкий металл, обладающий высокими тепло- и электропроводностью, стойкостью к коррозии. В зависимости от степени чистоты различают алюминий особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% алюминия; буква "Е" обозначает повышенное содержание железа и пониженное кремния.
Например:
- А999 - алюминий особой чистоты, в котором содержится не менее 99,999% алюминия;
- А5 - алюминий технической чистоты в котором 99,5% алюминия.
Алюминий и алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой.
Чистый деформируемый алюминий обозначается буквами "АД" с указанием степени его чистоты, например: АДоч (≥99,98% Al), АД000(≥99,80% Аl), АД0(99,5% Аl), АД1 (99,30% Al), АД(≥98,80% Аl).
Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. К деформируемым алюминиевым сплавам, не упрочняемым термообработкой, относятся сплавы системы Al-Mn и Al -Mg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы входящих в состав сплава компонентов и цифры, указывающие содержание этих легирующих элементов в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы Al-Cu-Mg (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного химического состава. Дуралюмины маркируются буквой "Д" и порядковым номером, например: Д1, Д12, Д18, АК4, АК8.
Литейные алюминиевые сплавы обладает хорошей жидкотекучестью, имеют сравнительно малую усадку и предназначены в основном для фасонного литья. Эти сплавы маркируются буквами "АЛ" с последующим порядковым номером, например: АЛ2, АЛ9, АЛ13, АЛ22, АЛЗО. Иногда маркировка осуществляется по химическому составу сплава, например: АК7М2; АК21М2, 5Н2,5; АК4МЦ6. В этом случае "М" обозначает медь, "К" - кремний, "Ц" - цинк, "Н" - никель; цифра - среднее % содержание элемента.
Алюминиевые сплавы обладают малой плотностью (малый вес), высокой коррозийной стойкостью.
Основные области применения чистого алюминия:
- электрическая промышленность - проводники электрического тока в воздушных электросетях (электропроводность алюминия составляет 65, 5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь);
- пищевая промышленность (посуда, фольга, используемая как упаковочный материал);
. - порошковый алюминий используется как горючее в твёрдых ракетных топливах;
- электроника (детали электрических конденсаторов, выпрямителей).
Основные области применения алюминиевых сплавов:
- авиа-, судо- и вагоностроение (элементы корпусов и обшивки, трапы, лестницы, дымовые трубы, палубные надстройки, части двигателей малых и крупных судов);
- машиностроение (корпуса двигателей, крыльчатки насосов, корпуса приборов, блоки двигателей внутреннего сгорания, поршни, головки и рубашки цилиндров поршневых двигателей);
- приборостроение (корпуса и комплектующие части для различного оборудования, радиаторы для холодильной техники и обогревательных приборов);
- строительство (балки, перекрытия, колонны, перила, ограждения, элементы вентиляционных систем, уголки, швеллеры, оконный и дверной профиль);
- автомобилестроение (детали кузовов, бамперы).
В промышленности используются также алюминиевые антифрикционные сплавы. Такие сплавы маркируют буквой "А" и начальными буквами входящих в них элементов, например: А09-2, А06-1, АН-2,5, АСМТ. Первые два сплава содержат олово и медь (первая цифра-олово, вторая-медь в %), третий 2,7-3,3% никеля и четвертый – медь, с
Основные области применения алюминиевых антифрикционных сплавов.
Из этих сплавов изготовляют подшипники и вкладыши как литьем, так и обработкой давлением.
Титан и его сплавы.
Титан - тугоплавкий металл с невысокой плотностью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей, поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40%. Титан хорошо обрабатывается давлением, сваривается, из него можно изготовить сложные отливки, но обработка резанием затруднительна. Для получения сплавов с улучшенными свойствами титан легируют алюминием, хромом, молибденом.
Титан и его сплавы маркируют буквами "ВТ" и порядковым номером:
ВТ1-00, ВТЗ-1, ВТ4, ВТ8, ВТ14.
Пять титановых сплавов обозначены иначе:
0Т4-0, 0Т4, 0Т4-1, ПТ-7М, ПТ-3В.
Титановые сплавы разделяются на литейные и деформируемые. Наиболее известны литейные сплавы ВТ1Л, ВТ5Л, ВТ9Л. Сплав ВТ1Л обладает наибольшей химической стойкостью. Сплав ВТ5Л применяют для деталей, работающих в диапазоне температур от -253ºС до +350ºС. Сплав ВТ9Л наиболее высокопрочный, предназначен для изготовления деталей, работающих при температуре до +500ºС.
Титановые сплавы обладают высокой прочностью, жаростойкостью, коррозионной стойкостью и малой плотностью (малый вес).
Основные области применения чистого титана:
- электровакуумная промышленность (изготовление деталей электронного оборудования).
Основные области применения титановых сплавов:
-авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);
- химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);
- морское и речное судостроение (гребные винты, обшивка морских судов, корпуса подводных лодок);
- криогенная техника (высокая ударная вязкость, характеризующая пластичность, сохраняется до –253oС) - детали холодильников, насосов компрессоров.
Магний и его сплавы.
Среди промышленных металлов магний обладает наименьшей плотностью (1700 кг/м3). При повышении температуры магний интенсивно окисляется и даже самовоспламеняется. Он обладает малой прочностью и пластичностью. Для повышения химико-механических свойств магния в него вводят алюминий, цинк, марганец и другие легирующие добавки. В результате легирования магния получают магниевые сплавы.
Магниевые сплавы подразделяют на деформируемые и литейные. Первые маркируются буквами "МА", вторые "МЛ". После букв указывается порядковый номер сплава в соответствующем ГОСТе.
Например:
МА1-деформируемый магниевый сплав №1;
МЛ19-литейный магниевый сплав №19
Магниевые сплавы отличаются малой плотностью (малый вес), способностью воспринимать ударные нагрузки и низкой коррозийной и химической стойкостью.
Основные области применения чистого магния:
- детали электробатарей, сухих элементов питания;
- медицина (соли магния используются для лечения широкого спектра заболеваний);
- металлургия (магний служит для восстановления ценных видов металлов – циркония, ванадия, титана и хрома, а также для раскисления стали и легирования чугуна).
Основные области применения сплавов магния:
- автомобилестроение - каркасы сидений, панели приборов, педали и т.д. (важен малый вес деталей);
- детали пневматического оборудования – отбойных молотков и пневмобуров;
- комплектующие для фото- и видеотехники;
- детали авиационной и ракетной техники (важен малый вес деталей).
Магнитные материалыподразделяются на магнитомягкие (коэрцитивная сила* Нс < 800 А/м ) и магнитотвёрдые ( Нс > 4 А/м).
Основные области применения магнитных материалов.
- магнитомягкие материалы (чистое железо) - производство магнитопроводов (сердечники трансформаторов, якоря и статоры электродвигателей, электромагнитов);
- магнитотвёрдые материалы, выпускаемые на основе сплавов Fe-Ni-Al (сплавы ЮНД) и Fe-Ni-Co-Al (сплавы ЮНДК) - изготовление постоянных магнитов в радиотехнике.
* Коэрцитивная сила – напряжение магнитного поля, необходимое для полного размагничивания предварительно намагниченного материала.