Фото. Плазменная резка металла

Электроды для плазменной резки изготавливают из меди, гафния, вольфрама (активированного иттрием, лантаном или торием) и других материалов.

Фото. Сопла (в разрезе) для плазменной резки – медное (слева) и медное с вольфрамовой вставкой компании Thermacut (справа)

Количество тепла, необходимое для выплавления реза (эффективная тепловая мощность qр), поступает из столба плазменной дуги и определяется выражением:

qр = Vр•F•γ•c•[(Tпл–T0)+q]•4,19,

где Vр – скорость резки (см/с);

F – площадь поперечного сечения зоны выплавляемого металла (см2);

γ – плотность металла (г/см3);

с – теплоемкость металла, Дж/(г•°С);

Тпл – температура плавления металла (°С);

T0 – температура металла до начала резки (°С);

q – скрытая теплота плавления (°С).

Произведение Vр•F•γ определяет массу выплавляемого металла за единицу времени (г/с). Для заданной толщины металла имеется определенное числовое значение эффективной тепловой мощности qр, ниже которого процесс резки невозможен.

Скорость потока плазмы, удаляющего расплавленный металл, возрастает с увеличением расхода плазмообразующего газа и силы тока и уменьшается с увеличением диаметра сопла плазмотрона. Она может достигать около 800 м/с при силе тока 250А.

Плазмообразующие газы

Технологические возможности процесса плазменной резки металла (скорость, качество и др.), а также характеристики основных узлов плазмотронов определяются прежде всего плазмообразующей средой. Влияние состава плазмообразующей среды на процесс резки:

• за счет изменения состава среды возможно регулирование в широких пределах количества тепловой энергии, выделяющейся в дуге, поскольку при определенной геометрии сопла и данном токе состав среды задает напряженность поля столба дуги внутри и вне сопла;

• состав плазмообразующей среды оказывает наибольшее влияние на максимально допустимое значение отношения тока к диаметру сопла, что позволяет регулировать плотность тока в дуге, величину теплового потока в полости реза и, таким образом, определять ширину реза и скорость резки;

• от состава плазмообразующей смеси зависит ее теплопроводность, определяющая эффективность передачи разрезаемому листу тепловой энергии, выделенной в дуге;

• в ряде случаев весьма значительной оказывается добавка тепловой энергии, выделившейся в результате химического взаимодействия плазмообразующей среды с разрезаемым металлом (она может быть соизмерима с электрической мощностью дуги);

• плазмообразующая среда при взаимодействии с выплавляемым металлом дает возможность изменять его вязкость, химический состав, величину поверхностного напряжения;

• подбирая состав плазмообразующей среды, можно создавать наилучшие условия для удаления расплавленного металла из полости реза, а также предотвратить образование подплывов на нижних кромках разрезаемого листа или делая их легко удаляемыми;

• от состава среды зависит характер физико-химических процессов на стенках реза и глубина газонасыщенного слоя, поэтому для определенных металлов и сплавов некоторые плазмообразующие смеси недопустимы (например, содержащие водород и азот в случае резки титана); диапазон допустимых смесей также сужается с увеличением толщины разрезаемых листов и теплопроводности материала.

От состава плазмообразующей среды зависят и характеристики оборудования:

• материал катода и конструкция катодного узла (способ крепления катода в плазмотроне и интенсивность его охлаждения);

• конструкция системы охлаждения сопел;

• мощность источника питания, а также форма его внешних статических характеристик и динамические свойства;

• схема управления оборудованием, поскольку состав и расход плазмообразующего газа полностью определяют циклограмму формирования рабочей дуги.

При выборе плазмообразующей среды также важно учитывать себестоимость процесса и дефицитность используемых материалов.

Таблица. Наиболее распространенные плазмообразующие газы

Таблица. Наиболее распространенные плазмообразующие газы

Газ Обрабатываемый металл
Алюминий, медь и сплавы на их основе Коррозионно-стойкая сталь Углеродистая и низколегированная сталь
Сжатый воздух Для заготовительной машинной резки Для экономичной ручной и машинной резки
Кислород Не рекомендуется Для машинной резки повышенного качества
Aзотно-кислородная смесь Не рекомендуется Для машинной резки с повышенной скоростью
Азот Для экономичной ручной и машинной резки Для ручной и полуавтоматической резки
Aргоно-водородная смесь Для резки кромок повышенного качества Не рекомендуется

Резка с применением воздуха в качестве плазмообразующей среды называется воздушно-плазменной резкой.



Наши рекомендации