Структура расчётных формул
В расчётах по несущей способности (по предельным состояниям первой группы) исходят из стадии III напряжённо-деформированного состояния.
Расчет по прочности бетонных и железобетонных элементов по предельным усилиям производят из условия, что усилие от внешних нагрузок и воздействий в рассматриваемом сечении не должно превышать предельного усилия, которое может быть воспринято элементом в этом сечении.
При этом производится проверка выполнения условия
F Fult
где F - вероятное наибольшее усилие, которое может возникнуть в элементе при исключительных, критических, но всё же возможных обстоятельствах;
Fult - вероятная минимальная несущая способность элемента, определённая с учётом пониженной против контролируемой прочности бетона и арматуры.
Изменчивость величин F и Fult как правило, описывается законом нормального распределения случайных величин.
Подробнее условие можно записать так:
,
где С ‒ коэффициент, учитывающий насколько точно выбранная расчётная схема отражает работу реальной конструкции и другие факторы;
S ‒ коэффициент, учитывающий форму и размеры поперечного сечения элемента.
Учитывая, что g = gn∙γf и v = vn ∙γf , a Rb = , Rs = , неравенство можно записать несколько короче
Расчёт по перемещениям обычно заключается в определении прогиба конструкции от нагрузок с учётом их длительности действия и и в сравнении его с предельно допустимым прогибом
f ≤ fult.
где fult ‒ предельно допустимый прогиб по нормам для рассматриваемой конструкции.
Расчёт по раскрытию трещин заключается в определении ширины раскрытия трещин и сравнении её с предельно допустимой шириной раскрытия
acrc ≤ acrc,ult.
Расчет железобетонных элементов следует производить по продолжительному и по непродолжительному раскрытию нормальных и наклонных трещин.
Ширину продолжительного раскрытия трещин определяют по формуле:
acrc = acrc1,
а непродолжительного раскрытия трещин - по формуле
acrc = acrc1 + acrc2 - acrc3,
где acrc1 ‒ ширина раскрытия трещин от продолжительного действия постоянных и временных длительных нагрузок;
acrc2 ‒ ширина раскрытия трещин от непродолжительного действия постоянных и временных (длительных и кратковременных) нагрузок;
acrc3 ‒ ширина раскрытия трещин от непродолжительного действия постоянных и временных длительных нагрузок.
Считается, что трещины не появляются, если усилие N от действия внешних нагрузок не превосходит усилия Fcrc,ult, т.е.
F ≤ Fcrc,ult
где Fcrc,ult ‒ усилие, воспринимаемое сечением в момент, предшествующий образованию трещин.
Метод расчёта по предельным состояниям называют полувероятностным. Большинство величин, входящих в расчётные формулы, являются величинами случайными. Нормативные значения нагрузок и воздействий, а также сопротивлений материалов обоснованы с позиций теории вероятностей. Однако проектировщик пользуется конкретными детерминированными величинами, полученными на основании теории вероятностей. Таким образом, теория вероятностей используется в нормах проектирования строительных конструкций в неявной форме, что послужило основанием метод расчёта по предельным состояниям называть полувероятностным.
Основная идея метода расчёта по предельным состояниям заключается в обеспечении гарантии того, чтобы даже в тех редких случаях, когда на конструкцию действуют максимально возможные нагрузки, прочность бетона и арматуры минимальна, а условия эксплуатации весьма неблагоприятны, конструкция не разрушалась или не получала бы недопустимых прогибов или трещин.
Достоинства метода:
1. Введением в расчёты вместо единого коэффициента запаса прочности системы расчётных коэффициентов, учитывающих дифференцированно влияние на несущую способность элемента изменчивости нагрузок, прочностных свойств материалов, условий эксплуатации, класса ответственности достигают лучшей сходимости теоретических данных с опытными, чем при едином коэффициенте запаса k в прежних методах расчёта.
2. Каждое новое достижение в повышении однородности материалов может быть учтено в нормах, что приведёт к их экономии.
3. Конструкции, рассчитанные по предельным состояниям, получаются несколько экономичнее по расходу материалов.
Недостатки метода:
1. Некоторые коэффициенты метода не получили достаточного опытного обоснования. Так, например, одинаковый коэффициент надёжности по нагрузке для собственного веса применяемый как для большепролётных тонкостенных покрытий типа оболочек, где нагрузка от массы покрытия является основной, так и для междуэтажных перекрытий, которые работают на значительную временную нагрузку, недостаточно обоснован.
2. Определение несущей способности элементов, состоящих из двух и более материалов (например, железобетонных) выполняется в настоящее время без учёта совместного статистического разброса прочности этих материалов при расчётных сопротивлениях, соответствующих низкой прочности каждого материала. Вероятность обнаружить материал с прочностью ниже расчётного сопротивления приблизительно равна 0,001. Вероятность совместного невыгодного попадания арматуры и бетона минимальной прочности является величиной чрезвычайно малой (примерно 2 ∙ 10-6), которая практически не может встретиться в эксплуатируемых конструкциях. В связи с этим запроектированные по нормам конструкции обладают дополнительными резервами прочности, которые не учитываются в расчётах.