Первый закон Ньютона. Масса. Сила 6 страница
В системе К' им соответствуют координаты х'1и x'2и моменты времени t'1и t'2. Если события в системе К происходят в одной точке (х1=х2) и являются одновременными (t1=t2), то, согласно преобразованиям Лоренца (36.3),
x'1=x'2,t'1=t'2
т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.
Если события в системе К пространственно разобщены (х1¹х2), но одновременны (t1=t2), то в системе К', согласно преобразованиям Лоренца (36.3),
Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности t'2- t'1определяется знаком выражения v(x1-x2), поэтому в различных точках системы отсчета К' (при разных v) разность t'2-t'1будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.
2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) t=t2-t1, где индексы 1 и 2 соответствуют началу и концу события. Длительность
этого же события в системе К
t'=t'2-t'1, (37.1)
причем началу и концу события, согласно (36.3), соответствуют
Подставляя (37.2) в (37.1), получим
Из соотношения (37.3) вытекает, что t<t', т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени t', отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала т, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» и «движущаяся» системы соотношения для t и t' обратимы. Из (37.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости света в вакууме.
В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществляется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света (Ö(1-b2) = 0,001). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонавта в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю
в 1/Ö(1-b2) раз более молодым, чем его брат-близнец, оставшийся на Земле. Это явление, получившее название парадокса близнецов,в действительности парадокса не содержит. Дело в том, что принцип относительности утверждает равноправность не всяких систем отсчета, а только инерциальных. Неправильность рассуждения состоит в том, что системы отсчета, связанные с близнецами,— не эквивалентны: земная система инерциальна, а корабельная — неинерциальна, поэтому к ним принцип относительности неприменим.
Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с p-мезонами. Среднее время жизни покоящихся p-мезонов (по часам, движущимся вместе с ними) t»2,2•10-8с. Следовательно, p-мезоны, образующиеся в верхних слоях атмосферы (на высоте «30 км) и движущиеся со скоростью, близкой к скорости света, должны были бы проходить расстояния сt»6,6 м, т. е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок
жизни p-мезона t' =t/Ö(1-b2), а путь этих
частиц в атмосфере vt'= (bct'= bct/Ö(1-b2). Так как b»1, то vt'>>сt.
3. Длина тел в разных системах отсчета.Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет l'0=x'2 -х'1, где х'1и х'2 — не изменяющиеся со временем t'координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты его концов х1 и x2в системе K в один и тот же момент времени t. Их разность l= х2-х1и даст длину стержня в системе К. Используя преобразования Лоренца (36.3), получим
Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (37.4).
Из выражения (37.4) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения
в Ö(1-b2) раз, т. е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (36.3) следует, что
y'2-y'1=y2-y1и z'2 - z'1=z2 - z1 ,
т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.
4. Релятивистский закон сложения скоростей.Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами х, у, z, а в системе К,' в момент времени t' —координатами х' , у' , z' , то
представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем K и K'.
Согласно преобразованиям Лоренца (36.3),
Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростейспециальной теории относительности:
Если материальная точка движется параллельно оси х, то скорость uотносительно системы К. совпадает с uх, а скорость u' относительно К' — с u'х. Тогда закон сложения скоростей примет вид
Легко убедиться в том, что если скорости v, u' и u малы по сравнению со скоростью света с, то формулы (37.5) и (37.6) переходят в закон сложения скоростей
в классической механике (см. (34.4)). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью света) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.
Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна (см. §35). Действительно, если u' = с, то формула (37.6) примет вид u= (c+v)/(1+cv/c)=с (аналогично можно показать, что при u =с скорость u' также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна.
Докажем также, что если складываемые скорости сколь угодно близки к скорости света с, то их результирующая скорость будет всегда меньше или равна с. В качестве примера рассмотрим предельный случай u' = v = c. После подстановки в формулу (37.6) получим u=с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равная с/n (n — абсолютный показатель преломления среды), предельной величиной не является (подробнее см. § 189).
. Интервал между событиями
Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разное. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной физической величины, не зависящей от системы отсчета, т. е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами
(х, у, z, t), такой физической величиной является интервалмежду двумя событиями:
ного трехмерного пространства, в которых эти события произошли. Введя обозначение t12=t2-t1, получим
Покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив Dt = t2-t1, Dx=x2-x1, Dy =y2 -y1 иDz=z2-z1, выражение (38.1) можно записать в виде
Интервал между теми же событиями в системе К' равен
Согласно преобразованиям Лоренца (36.3),
Подставив эти значения в (38.2), после элементарных преобразований получим, что (s'12)2 = c2(Dt)2-(Dx)2-(Dy)2-(Dz)2, т. е.
(s'12)2 = s212.
Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит
объективный характер и не зависит от системы отсчета.
Теория относительности, таким образом, сформулировала новое представление о пространстве и времени, обобщенное далее в диалектическом материализме. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея — Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи — пространство-время. Пространство и время не существуют вне материи и независимо от нее. Ф. Энгельс подчеркивал, что «обе эти формы существования материи без материи суть ничто, простые представления, абстракции, существующие только в нашей голове» (Маркс К. и Энгельс Ф. Соч. 2-е изд. Т. 20. С. 550).
Дальнейшее развитие теории относительности (общая теория относительности,или теория тяготения)показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т. е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.
Основной закон релятивистской динамики материальной точки
Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX столетия на опытах с быстро движущимися электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением скорости по закону
где m0 — масса покояматериальной точки, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой материальная точка находится в покое; с —скорость света в вакууме; m — масса точки в системе отсчета, относительно которой она движется со скоростью v. Из принципа относительности Эйнштейна (см. §35), утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона
оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.
Основной закон релятивистской динамикиматериальной точки имеет вид
— релятивистский импульсматериальной точки.
Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньютоновской механики (6.7). Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (39.4). Таким образом, уравнение (39.2) инвариантно по отношению
к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.
В силу однородности пространства (см. § 9) в релятивистской механике выполняется закон сохранения релятивистского импульса:релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.
Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости света, уравнение (39.2) переходит в основной закон (см. (6.5)) классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v<<с. Законы классической механики получаются как следствие теории относительности для предельного случая v<<с (формально переход осуществляется при с®¥). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).
Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем (см. §116) будет показано, что на основании этой зависимости производятся расчеты ускорителей
Закон взаимосвязи массы и энергии
Найдем кинетическую энергию релятивистской частицы (материальной точки). Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:
dT = dA или dT=Fdr. (40.1)
Учитывая, что dr= vdt, и подставив в (40.1) выражение (39.2), получим
Преобразовав данное выражение с учетом того, что vdv=vdv, и формулы (39.1), придем к выражению
т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.
Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя то, то, проинтегрировав (40.2), получим
Т=(m-m0)с2, (40.3)
или кинетическая энергия релятивистской частицы имеет вид
Выражение (40.4) при скоростях v<<с переходит в классическое:
T = m0v2/2
(разлагая в ряд (1-v2/с2)-1/2= 1 +1/2Xv2/c2+3/8v4/c4+... при v<<с, правомерно
пренебречь членами второго порядка малости).
А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии материальной точки, но и для полной энергии, а именно: любое изменение массы Dm сопровождается изменением полной энергии материальной точки,
DE=с2Dm. (40.5) Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой m:
Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы— закон взаимосвязи (пропорциональности) массы и энергии:полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.
Закон (40.6) можно, учитывая выражение (40.3), записать в виде
Е = m0с2 + Т,
откуда следует, что покоящееся тело (Т = = 0) также обладает энергией
Е0=m0с2,
называемой энергией покоя.Классическая механика энергию покоя Е0не учитывает, считая, что при v=0энергия покоящегося тела равна нулю.
В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии:полная энергия замкнутой системы сохраняется, т. е: не изменяется с течением времени.
Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы:
Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко всем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса
m=Е/с2 (40.8)
связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), рассматривают энергию связи. Энергия связи системыравна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро—на протоны и нейтроны). Энергия связи системы
где m0i — масса покоя i-й частицы в свободном состоянии; m0— масса покоя системы, состоящей из n частиц.
Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.
Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.
Эту ломку укоренившихся представлений некоторые буржуазные философы пытались использовать для распространения двух разновидностей идеализма: энергетизма и философского релятивизма. Первая из этих теорий рассматривала возможность преобразования массы в энергию и, наоборот, энергии в массу, «доказывая» «эквивалентность материи и энергии». Закон взаимосвязи массы и энергии действительно утверждает, что любые превращения энергии тела сопровождаются изменениями его массы, однако при этом масса не «переходит в энергию». Закон взаимосвязи массы и энергии является подтверждением неразрывности материи и движения — одного из основных положений диалектического материализма.
Философский релятивизм считает, что наше познание относительно и зависит «от выбора точки зрения наблюдателя». Однако из постулатов и следствий теории Эйнштейна относительность нашего познания не вытекает. Тот факт, что длина тел и длительность событий в разных инерциальных системах отсчета различны, не дает оснований считать, что объективное описание окружающего нас мира невозможно. В. И. Ленин в книге «Материализм и эмпириокритицизм» писал: «Человеческие представления о пространстве и времени относительны, но из этих относительных представлений складывается абсолютная истина, эти относительные представления, развиваясь, идут по линии абсолютной истины, приближаются к ней. Изменчивость человеческих представлений о пространстве и времени так же мало опровергает объективную реальность того и другого, как изменчивость научных знаний о строении и формах движения материи не опровергает объективной реальности внешнего мира» (Полн. собр. соч. Т. 18. С. 181).
Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.
Основы молекулярной физики и термодинамики