Закон сохранения импульса.
Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.
Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны т1, m2, . .., тn и v1, v2, .. ., vn. Пусть F'1, F'2, ..., F'n — равнодействующие внутренних сил, действующих на каждое из этих тел, a f1, f2, ..., Fn — равнодействующие внешних сил. Запишем второй закон Ньютона для каждого из n тел механической системы:
d/dt(m1v1)=F'1+F1,
d/dt(m2v2)=F'2+F2,
d/dt)mnvn)= F'n+Fn.
Складывая почленно эти уравнения, получим
d/dt (m1v1+m2v2+... + mnvn) = F'1+F'2+...+ F'n+F1+F2+...+ Fn.
Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то
d/dt(m1v1+m2v2 + ... + mnvn)= F1 + F2+...+ Fn, или
dp/dt=F1+ F2+...+ Fn, (9.1)
где
импульс системы.
Таким образом, производная по времени от импульса механической системы равна геометрической сумме внешних сил, действующих на систему.
В случае отсутствия внешних сил (рассматриваем замкнутую систему)
Это выражение и является законом сохранения импульса:импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона.
Однородность пространствазаключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.
Центром масс(или центром инерции)системы материальных точек называется воображаемая точка С, положение которой характеризует распределение массы этой системы. Ее радиус-вектор равен
где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе;
— масса системы.
Скорость центра масс
Учитывая, что pi =mivi, а
есть импульс р системы, можно написать
p = mvc, (9.2)
т. е. импульс системы равен произведению массы системы на скорость ее центра масс.
Подставив выражение (9.2) в уравнение (9.1), получим
mdvc/dt=F1+ F2+...+ Fn, (9.3)
т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Выражение (9.3) представляет собой закон движения центра масс.
В соответствии с (9.2) из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным.
Закон сохранения энергии.
Рассмотрим систему материальных точек массами m1, m2, ..., mn, движущихся со скоростями v1, v2, ..., vn. Пусть F'1, F'2, ..., F'n — равнодействующие внутренних консервативных сил, действующих на каждую из этих точек, a f1, F2, ..., Fn— равнодействующие внешних сил, которые также будем считать консервативными. Кроме того, будем считать, что на материальные точки действуют еще и внешние неконсервативные силы; равнодействующие этих сил, действующих на каждую из материальных точек, обозначим f1, f2, ..., fn. При v<<с массы материальных точек
постоянны и уравнения второго закона Ньютона для этих точек следующие:
Двигаясь под действием сил, точки системы за интервал времени dt совершают перемещения, соответственно равные dr1, dr2, ..., drn. Умножим каждое из уравнений скалярно на соответствующее перемещение и, учитывая, что dri = vidt, получим:
Сложив эти уравнения, получим
Первый член левой части равенства (13.1)
где dT есть приращение кинетической энергии системы. Второй член
равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т. е. равен элементарному приращению потенциальной энергии dП системы (см. (12.2)).
Правая часть равенства (13.1) задает работу внешних неконсервативных сил,
действующих на систему. Таким образом, имеем
d(T+П)=dA. (13.2)
При переходе системы из состояния 1 в какое-либо состояние 2
т. е. изменение полной механической энергии системы при переходе из одного состояния в другое равно работе, совершенной при этом внешними неконсервативными силами.
Если внешние неконсервативные силы отсутствуют, то из (13.2) следует, что
d(Т+П) = 0,
откуда
Т+П = E=const, (13.3)
т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохранения механической энергии:в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.
Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.
Закон сохранения механической энергии связан с однородностью времени, т. е. инвариантностью физических законов относительно выбора начала отсчета времени.
Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.