Оксиды, входящие в каркас стеклообразователя и разрушающие его структуру | |
Стеклообразующими, т.е. способными создавать пространственную сетку, являются помимо SiO
2 также, например, B
2O
3, GeO, P
2O
3.
Однако свойства стекол определяются не только стеклообразующими оксидами, они сильно зависят от других примесей, называемых модификаторами. Не образуя в стекле собственных каркасов, многие примеси способны нарушать структуру стеклообразующих оксидов и вследствие этого менять, модифицировать свойства стекла.
Например, оксиды щелочных металлов (Na2O, K2O) вводятся в стекла для снижения температуры варки, обработки и подавления склонности стекла к кристаллизации (расстекловыванию).
Однако слабо связанные щелочные ионы под действием теплового движения могут срываться с мест закрепления и перемещаться из одной ячейки пространственной сетки в другую, что приводит к усилению ионно-релаксационной поляризации и сопровождается ростом tgδ. При этом уменьшается ρ, так как возрастает количество ионов, участвующих в процессе электропроводности (рис.3.20).
В то же время присутствие в составе стекла двух различных щелочных оксидов увеличивает e и уменьшает tgδ по сравнению со стеклом, содержащим только один щелочной оксид. Такое явление называется нейтрализационным или полищелочным эффектом. Для уменьшения вредного влияния оксидов щелочных металлов на электрические свойства в стекло вводят оксид щелочноземельных металлов (СаО, ВаО).
Третью группу компонентов стекла составляют оксиды, способные в зависимости от состава и условия получения входить в каркас стеклообразователя и разрушать его структуру. Кним относятся Al2O3, РbО, ZnO и другие оксиды, не вошедшие в 1-ю и 2-ю группы.
Таблица 1.11. Влияние различных оксидов на свойства стекол.
Параметры | Оксиды, входящие в состав стекла |
повышают параметр | понижают параметр |
1. Механические: | | |
модуль упругости | Al2O3 | B2O3, PbO |
твердость | SiO2 | PbO, Na2O |
2. Теплофизические: | | |
нагревостойкость | SiO2, Al2O3 | PbO, Na2O |
теплопроводность | SiO2, B2O3, Al2O3 | |
ТКЛР | Na2O | SiO2, B2O3, TiO2 |
3. Электрические: | | |
er | Na2O, K2O, TiO2, PbO | SiO2 |
tgδ | Na2O, K2O | SiO2, B2O3 |
EПР | SiO2, Al2O3 | Na2O |
Изменение свойств и параметров стекол в зависимости от вводимых в их состав оксидов качественно показано в табл. 3.11.
Рассмотрим подробнее теплофизические свойства стекол, отличающиеся наибольшим своеобразием. В связи с неупорядоченным состоянием и отсутствием свободных электронов стекла обладают очень низкой теплопроводностью, в сотни раз меньшей, чем металлы. Поэтому стеклянные детали – подложки, стенки корпусов, даже пленки – имеют высокое тепловое сопротивление и плохо пригодны для отвода тепла.
Уже в процессе формования изделия из-за опережающего охлаждения поверхностных слоев и низкой теплопроводности создается перепад температуры. По мере охлаждения внешние слои стекла теряют пластичность и создают сжимающие напряжения в объеме, а сами растягиваются. Если эти усилия превысят предел прочности стекла, произойдет его разрушение. Наличие остаточных напряжений характерно для стекла, поэтому изделия могут разрушаться как самопроизвольно, так и под действием даже небольших перепадов температуры или очень малых механических нагрузок. Для снятия остаточных напряжений стеклянные изделия необходимо подвергнуть отжигу – длительной термообработке при равномерном по объему детали нагреве.
Но и после этого прочность стекла составляет лишь около 0,01 от теоретической (рассчитанной по энергии связи электронов) из-за микротрещин на поверхности – очагов хрупкого разрушения.
Способность материала сохранять прочность при быстрой смене температур (термоударах) тем выше, чем меньше температурный коэффициент линейного расширения. Кварцевое стекло, обладающее самим низким из всех материалов ТКЛР=5·10-71/град, не разрушаясь, выдерживает смену температур 1000°С – вода.
От значения ТКЛР зависит также способность стекла к соединению с другими материалами сваркой. Расхождение в значениях ТКЛР стекла и свариваемого с ним материала не должно превышать 5%, и этот параметр служит основной характеристикой стекла, содержащейся в самом обозначении его марки согласно ГОСТ.
В зависимости от состава стекло обрабатывают при 600–1600°С, причем ценность представляют как тугоплавкие кварцевые стекла, использующиеся в качестве контейнеров и реакторов в полупроводниковом производстве и в составе паст для металлизации керамики, так и легкоплавкие, необходимые для герметизации приборов иИС, изготовления корпусов, проводниковых и резистивных паст.