Первый закон Ньютона. Масса. Сила 5 страница

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где р+rv2/2 называется полным давле­нием.

Из уравнения Бернулли (30.7) для горизонтальной трубки тока и уравнения неразрывности (29.1) следует, что при те-

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

чении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а ста­тическое давление больше в более широ­ких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, устано­вив вдоль трубы ряд манометров(рис.48). В соответствии с уравнением Бернулли опыт показывает, что в мано­метрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.

Так как динамическое давление связа­но со скоростью движения жидкости (га­за), то уравнение Бернулли позволяет из­мерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис.49). Прибор состоит из двух изогнутых под прямым углом трубок, про­тивоположные концы которых присоедине­ны к манометру. С помощью одной из трубок измеряется полное давление (р0), с помощью другой — статическое (р). Ма­нометром измеряется разность давлений:

p0-p = r0gh, (30.8)

где r — плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статическо­го давлений равна динамическому давле­нию:

p0-p=pv2/2. (30.9)

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Из формул (30.8) и (30.9) получаем иско­мую скорость потока жидкости:

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса(рис. 50). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно ат­мосферному. В трубке имеется сужение, по которому вода течет с большей скоро­стью. В этом месте давление меньше ат­мосферного. Это давление устанавливает­ся и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекаю­щей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст. = 133,32 Па).

Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жид­костью, в боковой стенке которого на не­которой глубине ниже уровня жидкости имеется маленькое отверстие (рис.51).

Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h2выхода ее из отверстия). Напишем для них уравнение Бернулли:

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Так как давления р1и р2в жидкости на уровнях первого и второго сечений равны

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

атмосферному, т. е. p1=p2, то уравнение будет иметь вид

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Из уравнения неразрывности (29.1) следу­ет, что v2/v1=S1/S2, где S1 и S2 — площа­ди поперечных сечений сосуда и отвер­стия. Если S1>>S2, то членом v21/2 можно пренебречь и

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Это выражение получило название форму­лы Торричелли.

Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

Вязкость (внутреннее трение) —это свой­ство реальных жидкостей оказывать со­противление перемещению одной части жидкости относительно другой. При пере­мещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по ка­сательной к поверхности слоев. Действие этих сил проявляется в том, что со сторо­ны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоря­ющая сила. Со стороны же слоя, движу­щегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем боль­ше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою.

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

На рисунке представлены два слоя, отстоящие друг от друга на расстоя­нии Dх и движущиеся со скоростями v1 и v2 При этом v1-v2 = Dv. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина Dv/Dx показывает, как быстро меняется скорость при перехо­де от слоя к слою в направлении х, пер­пендикулярном направлению движения слоев, и называется градиентом скорости.

Таким образом, модуль силы внутреннего трения

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где коэффициент пропорциональности h, зависящий от природы жидкости, называ­ется динамической вязкостью (или просто вязкостью).

Единица вязкости — паскаль•секунда (Па•с):1 Па•с равен динамической вязко­сти среды, в которой при ламинарном те­чении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м2 поверх­ности касания слоев (1 Па•с=1 Н•с/м2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от темпера­туры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей т] с увеличением температуры уменьшается, у газов, наоборот, увеличи­вается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18—40 °Спадает в че­тыре раза. Советский физик П. Л. Капица (1894—1984; Нобелевская премия 1978г.) открыл, что при температуре 2,17 К жид­кий гелий переходит в сверхтекучее со­стояние, в котором его вязкость равна нулю.

Существует два режима течения жид­костей. Течение называется ламинарным (слоистым),если вдоль потока каждый выделенный тонкий слой скользит относи­тельно соседних, не перемешиваясь с ни­ми, и турбулентным (вихревым),если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблю­дается при небольших скоростях ее дви­жения. Внешний слой жидкости, примыка­ющий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие ско­ростей, перпендикулярные течению, поэто­му они могут переходить из одного слоя в другой. Скорость частиц жидкости быст­ро возрастает по мере удаления от по­верхности трубы, затем изменяется дово­льно незначительно. Так как частицы жид­кости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах ;(рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения.

Английский ученый О. Рейнольдс (1842—1912) в 1883 г. установил, что ха­рактер течения зависит от безразмерной величины, называемой числом Рейнольдса:

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где v = h/r — кинематическая вязкость;

r — плотность жидкости; (v)—средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса (Re£1000) наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000£:Re£2000, а при Re = 2300 (для гладких труб) течение — турбулентное. Если число Рейнольдса одинаково, то ре­жим течения различных жидкостей (га­зов) в трубах разных сечений одинаков.

Методы определения вязкости

1. Метод Стокса.Этот метод определе­ния вязкости основан на измерении скоро­сти медленно движущихся в жидкости не­больших тел сферической формы.

На шарик, падающий в жидкости вер­тикально вниз, действуют три силы: сила тяжести P = 4/3pr3rg (r — плотность ша­рика), сила Архимеда FA = 4/3pr3r'g (r' — плотность жидкости) и сила сопротивле­ния, эмпирически установленная Дж. Стоксом: F=6phrv, где r — радиус шарика, v — его скорость. При равномер­ном движении шарика

p = fa + f,

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

или

4/3pr3rg = 4/33r'g + бphrv, откуда

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Измерив скорость равномерного движения шарика, можно определить вязкость жид­кости (газа).

2. Метод Пуазейля. Этот метод осно­ван на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной l. В жидкости мыс­ленно выделим цилиндрический слой ради­усом r и толщиной dr (рис. 54). Сила внут­реннего трения (см. (31.1)), действующая на боковую поверхность этого слоя,

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где dS — боковая поверхность цилиндри­ческого слоя; знак минус означает, что при возрастании радиуса скорость уменьша­ется.

Для установившегося течения жидко­сти сила внутреннего трения, действую­щая на боковую поверхность цилиндра, уравновешивается силой давления, дей­ствующей на его основание:

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получим

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Отсюда видно, что скорости частиц жид­кости распределяются по параболиче­скому закону, причем вершина параболы лежит на оси трубы (см. также рис.53). За время t из трубы вытечет жидкость, объем которой

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

откуда вязкость

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Движение тел в жидкостях и газах

Одной из важнейших задач аэро- и гидро­динамики является исследование движе­ния твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движе­ния морских судов.

На тело, движущееся в жидкости или газе, действуют две силы (равнодействую-

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

щую их обозначим R), одна из которых (Rx) направлена в сторону, противопо­ложную движению тела (в сторону по­тока),— лобовое сопротивление,а вторая (Ry) перпендикулярна этому направле­нию— подъемная сила(рис.55).

Если тело симметрично и его ось сим­метрии совпадает с направлением скоро­сти, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать,

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

что в идеальной жидкости равномерное движение происходит без лобового сопро­тивления. Если рассмотреть движение ци­линдра в такой жидкости (рис. 56), то картина линий тока симметрична как от­носительно прямой, проходящей через точ­ки A и В, таки относительно прямой, проходящей через точки С и D, т. е. ре­зультирующая сила давления на повер­хность цилиндра будет равна нулю.

Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличе­нии скорости обтекания). Вследствие вяз­кости среды в области, прилегающей к по­верхности тела, образуется пограничный слой частиц, движущихся с меньшими ско­ростями. В результате тормозящего дейст­вия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончаю­щейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидко­сти (газа), направленное противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противо­положные стороны (рис. 57).

Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным ко­эффициентом сопротивления Сх, определя­емым экспериментально:

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где r — плотность среды; v — скорость движения тела; S — наибольшее попере­чное сечение тела.

Составляющую Rx можно значитель­но уменьшить, подобрав тело такой фор­мы, которая не способствует образованию завихрения.

Подъемная сила может быть определе­на формулой, аналогичной (33.1):

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где Су — безразмерный коэффициент подъемной силы.

Для крыла самолета требуется боль­шая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атакиа (угол к потоку); см. рис. 55). Крыло тем лучше удовлетво­ряет этому условию, чем больше величина К=Сух, называемая качеством крыла.Большие заслуги в конструировании тре­буемого профиля крыла и изучении влия­ния геометрической формы тела на ко­эффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921).

Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

Если системы отсчета движутся относи­тельно друг друга равномерно и прямоли­нейно и в одной из них справедливы за­коны динамики Ньютона, то эти системы являются инерциальными. Установлено также, что во всех инерциальных си­стемах отсчета законы классической дина­мики имеют одинаковую форму; в этом суть механического принципа относитель­ности (принципа относительности Гали­лея).

Для его доказательства рассмотрим две системы отсчета: инерциальную систе­му К (с координатами х, у, z), которую условно будем считать неподвижной, и систему К' (с координатами х', у', z'), движущуюся относительно К равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момен­та, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени t расположение этих систем друг относительно друга имеет вид, изображен­ный на рис. 58. Скорость и направлена вдоль ОО', радиус-вектор, проведенный из О в О', r0=ut.

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что

r = r' + r0=r' + ut. (34.1)

Уравнение (34.1) можно записать в про­екциях на оси координат:

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Уравнения (34.1) и (34.2) носят название преобразований координат Галилея.

В частном случае, когда система К' движется со скоростью v вдоль положи­тельного направления оси х системы К (в начальный момент времени оси коорди­нат совпадают), преобразования коорди­нат Галилея имеют вид

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

В классической механике предполага­ется, что ход времени не зависит от отно­сительного движения систем отсчета, т. е. к преобразованиям (34.2) можно до­бавить еще одно уравнение:

t=t'. (34.3)

Записанные соотношения справедливы лишь в случае классической механики (u<<с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразовани­ями Лоренца (§36).

Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение

v = v' + u, (34.4)

которое представляет собой правило сло­жения скоростей в классической механике.

Ускорение в системе отсчета К

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково:

а = а'. (34.5)

Следовательно, если на точку А другие тела не действуют (а = 0), то, согласно (34.5), и а' = 0, т.е. система K' является инерциальной (точка движется относи­тельно нее равномерно и прямолинейно или покоится).

Таким образом, из соотношения (34.5) вытекает доказательство механического принципа относительности: уравнения ди­намики при переходе от одной инерциаль­ной системы отсчета к другой не изменя­ются, т. е. являются инвариантнымипо отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, дви­жущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

Постулаты специальной (частной) теории относительности

Классическая механика Ньютона прекрас­но описывает движение макротел, движу­щихся с малыми скоростями (v<<с). Од­нако в конце XIX в. выяснилось, что выво­ды классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заря­женных частиц оказалось, что их движе­ние не подчиняется законам механики. Да­лее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относи­тельно друга равномерно и прямолинейно, то, согласно классической механике, изме­ренная скорость должна зависеть от отно­сительной скорости их движения. Амери­канский физик А. Майкельсон (1852— 1913) в своем знаменитом опыте в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) — опыт Майкельсона — Морли —пытался обнаружить движение Земли относительно эфира (эфирный ветер), применяя интер­ферометр Майкельсона (см. § 175). Обна­ружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его об­наружить и в других многочисленных опы­тах. Опыты «упрямо» показывали, что ско­рости света в двух движущихся друг отно­сительно друга системах равны. Это противоречило правилу сложения скоро­стей классической механики.

Одновременно было показано противо­речие между классической теорией и урав­нениями (см. § 139) Дж. К. Максвелла (английский физик, 1831 —1879), лежащи­ми в основе понимания света как электро­магнитной волны.

Для объяснения этих и некоторых дру­гих опытных данных необходимо было со­здать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для ма­лых скоростей (v<<с). Это и удалось сде­лать А. Эйнштейну, одному из основателей современной физики, который, по словам В. И. Ленина, является одним «из великих преобразователей естествознания». А. Эйн­штейн пришел к выводу о том, что миро­вого эфира — особой среды, которая мог­ла бы быть принята в качестве абсолют­ной системы,— не существует. Существо­вание постоянной скорости распростране­ния света в вакууме находилось в со­гласии с уравнениями Максвелла.

Таким образом, А. Эйнштейн заложил основы специальной теории относительно­сти.Эта теория представляет собой совре­менную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. §13), а про-странство однородно (см. § 9) и изотропно (см. §19). Специальная теория относи­тельности часто называется также реляти­вистской теорией,а специфические явле­ния, описываемые этой теорией,— реляти­вистскими эффектами.

В основе специальной теории относи­тельности лежат постулаты Эйнштей­на,сформулированные им в 1905 г.

I. Принцип относительности:никакие опыты (механические, электрические, оп­тические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы ин­вариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

II. Принцип инвариантности скорости света:скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерци­альных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа от­носительности Галилея на любые физиче­ские процессы, утверждает, таким обра­зом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описываю­щие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Со­гласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродина­мические, оптические и др.) во всех инер­циальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштей­на, постоянство скорости света — фунда­ментальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных пред­ставлений о пространстве и времени, при­нятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолют­ное время.

Постулаты Эйнштейна и теория, по-

строенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, напри­мер, как относительность длин и проме­жутков времени, относительность одновре­менности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, явля­ясь тем самым обоснованием постулатов Эйнштейна — обоснованием специальной теории относительности.

Преобразования Лоренца

Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следова­тельно, должны быть заменены преобразо­ваниями, удовлетворяющими постулатам теории относительности.

Для иллюстрации этого вывода рас­смотрим две инерциальные системы отсче­та: К (с координатами х, у, z) и К' (с ко­ординатами х', у', z'), движущуюся отно­сительно К (вдоль оси х) со скоростью v = const (рис.59). Пусть в начальный момент времени t=t'=0, когда начала координат О и О' совпадают, излучается световой импульс. Согласно второму по­стулату Эйнштейна, скорость света в обе­их системах одна и та же и равна с. По­этому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние

x = ct, (36.1) то в системе К' координата светового им­пульса в момент достижения точки А

x'=ct', (36.2)

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

где t' — время прохождения светового им­пульса от начала координат до точки А в системе К'. Вычитая (36.1) из (36.2),

получим

x'—x = c(t'-t).

Так как х'¹х (система К' перемещается по отношению к системе К), то

t'¹t,

т. е. отсчет времени в системах К и К' различен — отсчет времени имеет относи­тельный характер (в классической физике считается, что время во всех инерциаль­ных системах отсчета течет одинаково, т.е. t=t').

Эйнштейн показал, что в теории отно­сительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой (см.§34):

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

— заменяются преобразованиями Лорен­ца, удовлетворяющими постулатам Эй­нштейна (формулы представлены для слу­чая, когда К' движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцом в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Макс­велла (см. § 139) инвариантны.

Преобразования Лоренцаимеют вид

Первый закон Ньютона. Масса. Сила 5 страница - student2.ru

Из сравнения приведенных уравнений вы­текает, что они симметричны и отличают­ся лишь знаком при v. Это очевидно, так как если скорость движения системы К' относительно системы К равна v, то ско­рость движения К относительно К! рав­на -v.

Из преобразований Лоренца вытекает также, что при малых скоростях (по срав­нению со скоростью света), т.е. когда b<<1, они переходят в классические пре­образования Галилея (в этом заключается суть принципа соответствия),которые яв­ляются, следовательно, предельным случа­ем преобразований Лоренца. При v>c выражения (36.3) для х, t, x', t' теря­ют физический смысл (становятся мнимы­ми). Это находится, в свою очередь, в со­ответствии с тем, что движение со скоро­стью, большей скорости света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что как рассто­яние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках пре­образований Галилея эти величины счита­лись абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и времен­ные преобразования (см. (36.3)) не явля­ются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — про­странственные координаты, т. е. устанав­ливается взаимосвязь пространства и вре­мени. Таким образом, теория Эйнштейна оперирует не с трехмерным простран­ством, к которому присоединяется понятие времени, а рассматривает неразрывно свя­занные пространственные и временные ко­ординаты, образующие четырехмерное пространство-время.

Следствия из преобразований Лоренца

1. Одновременность событий в разных системах отсчета.Пусть в системе K в точ­ках с координатами х1и x2в моменты времени t1и t2происходят два события.

Наши рекомендации