Оотношения неопределенностей Гейзенберга.
Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.
В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении микрочастицы по определенной траектории и неправомерно говорить о точных одновременных значениях ее координаты и импульса. Это следует из корпускулярно-волнового дуализма. Так, понятие «длина волны в данной точке» лишено физического смысла, а поскольку импульс выражается через длину волны (см. (20.2)), то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным.
Вернер Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой и импульсом. Согласно соотношению неопределенностей Гейзенбергу микрочастица (микрообъект) не может иметь одновременно и определенную координату (х, у, z), и определенную соответствующую проекцию импульса (рx, рy, pz), причем неопределенности этих величин удовлетворяют условиям
(13.5)
т. е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.
Из соотношения неопределенностей (13.5) следует, что, например, если микрочастица находится в состоянии с точным значением координаты (Dx=0), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопределенной (Dpx®¥), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта.
Поясним, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Пусть поток электронов проходит через узкую щель шириной Dx, расположенную перпендикулярно направлению их движения (рис. 20.6). Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля l электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране (Э), характеризуется главным максимумом, расположенным симметрично оси Y, и побочными максимумами по обе стороны от главного (их не рассматриваем, так как основная доля интенсивности приходится на главный максимум).
Рис. 13.6. Дифракция электронов на щели.
До прохождения через щель электроны двигались вдоль оси Y, поэтому составляющая импульса рх = 0, так что Dрх = 0, а координата х частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направлении оси Х определяется
с точностью до ширины щели, т. е. с точностью Dх. В этот же момент вследствие дифракции электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2j(j — угол, соответствующий первому дифракционному минимуму). Следовательно, появляется неопределенность в значении составляющей импульса вдоль оси Х, которая, как следует из рис. 13.6 и формулы (13.1), равна
(13.6)
Для простоты ограничимся рассмотрением только тех электронов, которые попадают на экран в пределах главного максимума. Из теории дифракции известно, что первый минимум соответствует углу j, удовлетворяющему условию
Dx×sinj = l, (13.7)
где Dх — ширина щели, а l — длина волны де Бройля. Из формул (13.6) и (13.7) получим
Dx×Dpx = h, (13.8)
где учтено, что для некоторой, хотя и незначительной, части электронов, попадающих за пределы главного максимума, величина Dрх³рsinj. Следовательно, получаем выражение
Dx×Dpx ³ h,
т. е. соотношение неопределенностей (13.5).
Важно усвоить, что невозможность одновременно точно определить координату и соответствующую проекцию импульса не связана с несовершенством методов измерения или измерительных приборов, а является следствием специфики микрообъектов, отражающей особенности их объективных свойств, а именно двойственной корпускулярно-волновой природы. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.
Соотношение неопределенностей, отражая специфику физики микрочастиц, позволяет оценить, например, в какой мере можно применять понятия классической механики к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Известно, что движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Выразим соотношение неопределенностей (13.5) в виде
Dx×Dvx ³ h/m. (13.9)
Из этого выражения следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории. Tax, например, уже для пылинки массой 10 -12 кг и линейными размерами 10 -6 м, координата которой определена с точностью до 0,01 ее размера (Dх = 10-8 м), неопределенность скорости, по (13.9),
т. е. не будет сказываться при всех скоростях, с которыми пылинка может двигаться.
Таким образом, для макроскопических тел их волновые свойства не играют никакой роли; координата и скорость макротел могут быть одновременно измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.
В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t, т. е. неопределенности этих величин удовлетворяют условию
DE×Dt ³ h. (13.10)
Подчеркнем, что DE —неопределенность энергии некоторого состояния системы, Dt — промежуток времени, в течение которого оно существует. Следовательно, система, имеющая среднее время жизни Dt, не может быть охарактеризована определенным значением энергии; разброс энергии возрастает с уменьшением среднего времени жизни. Из выражения (13.10) следует, что частота излученного фотона также должна иметь неопределенность , т. е. линии спектра должны характеризоваться частотой, равной . Опыт действительно показывает, что все спектральные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.
Соотношение (13.10) определяет возможность существования виртуальных частиц. В течение малого времени Dt энергия системы может измениться на DE без нарушения закона сохранения энергии. Так, энергия покоя частиц электрона и позитрона составляет по 0,51 МэВ = 0,816×10-19 Дж; в соответствии с соотношением неопределенностей (13.10), если время наблюдения составляет менее
то можно предполагать, что из кванта соответствующей величины – 1,02 МэВ – родилась и быстро исчезла электронно-позитронная пара.
Эти размышления породили гипотезу «кипящего» вакуума, в котором, при наличии соответствующей энергии или вследствие распада ядер, соударений частиц рождаются виртуальные частицы. При этом взаимодействие реальных частиц с виртуальными может приводить к существованию весьма нетривиальных образований. Например, взаимодействие реального электрона с виртуальной электрон-позитронной парой приводит к эффекту поляризации вакуума. Виртуальные позитроны притягиваются к реальному электрону, а виртуальные электроны – отталкиваются. Наблюдается экранирование заряда электрона по отношению к другим реальным заряженным частицам. Около реального электрона существует «шуба» из виртуальных частиц, поэтому такой электрон называют «физическим».
Лишенный «шубы» вакуумной поляризации электрон называют «голым» или истинным, его заряд больше заряда физического электрона и, по соответствующей оценке, составляет »3,0×10-19 Кл.
Волновая Y-функция и ее статистический смысл
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории — созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX в.; оно связано прежде всего с работами австрийского физика Эрвина Шредингера (1887—1961), немецкого физика Вернера Гейзенберга и английского физика Поля Дирáка (1902—1984).
На данном этапе развития (в 20-ых годах ХХ века) возникли новые принципиальные проблемы, в частности проблема физической природы воли де Бройля. Для выяснения этой проблемы сравним дифракцию световых волн и микрочастиц. Дифракционная картина, наблюдаемая для световых волн, характеризуется тем, что в результате наложения дифрагирующих волн друг на друга в различных точках пространства происходит усиление или ослабление амплитуды колебаний. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.
Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям, — в одних направлениях наблюдается большее число частиц, чем в других. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.
Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому «синусоидальному» закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.
Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая Y (х, у, z, t). Эту величину называют также волновой функцией (или Y-функцией). Амплитуда вероятности может быть комплексной величиной, и вероятность W пропорциональна квадрату ее модуля:
W~|Y(x,e,z,t)½2 (13.11)
(½Y½2 =Y×Y*, Y* — функция, комплексно сопряженная с Y). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени t в области с координатами x и х+dx, y и y+dy, z и z+dz.
Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому — с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна
dW = ½Y½2dV. (13.12)
Величина
(квадрат модуля Y-функции) имеет смысл плотности вероятности, т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. Таким образом, физический смысл имеет не сама Y-функция, а квадрат ее модуля |Y|2, которым задастся интенсивность волн де Бройля.
Вероятность найти частицу в момент времени t в конечном объеме V, согласно теореме сложения вероятностей, равна
Так как ½Y½2dV определяется как вероятность, то необходимо волновую функцию Y нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве (вспомните задачу о поимке льва в пустыне: «берем пустыню, песок просеиваем…»). Следовательно, условие нормировки вероятностей
(13.13)
где данный интеграл (20.13) вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от - ¥до +¥. Таким образом, условие (13.13) говорит об объективном существовании частицы в пространстве.
Чтобы волновая функция являлась объективной характеристикой состояния микрочастиц, она должна удовлетворять ряду ограничительных условий, обычных с точки зрения математики. Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть непрерывной (вероятность не может изменяться скачком), непрерывными должны быть и её первые производные; конечными должны быть вторые производные (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной).
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1,Y2,....,Yn,…, то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:
где Сn (n = 1, 2, ...) - произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.
Волновая функция Y, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние <r> электрона от ядра вычисляют по формуле
где интегрирование производится, как и в случае (13.13).