Кинематика точки Сущ-ет 3 способа задания дв-я точки: векторный, координатный, естественный. При векторном способе задания точки откладываются векторы из одной точки

Задается r, как ф-ция от времени r=r(t)

Кривая, которую вычерчивает конец вектора, отложенный из одной общей точки наз-ся годографом.

Гадограф радиуса вектора точки – это траектория точки.

V=lim(Dr/Dt)=dr/dt –скорость

Отсюда вывод-скорость направлена по касательной к траектории точки.

W= lim(Dv/Dt)=dv/dt – ускорение

При коорд.способе задания точки берем коорд. сетку: оси x, y, z

x=f1(t)

y= f2(t)

z= f3(t)

Vx=x=d f1/Dt Wx=x=

Vy=y=d f2/Dt Wy=y=

Vz=z=d f3/Dt Wz=z=

V=ÖVx2 + Vy2 + Vz2

W=ÖWx2 + Wy2 + Wz2

Cos(V,x)= Vx/V

Cos(V,y)= Vy/V

Cos(V,z)= Vz/V

Естественный способ задания дв-я точки.

При естеств.способе задания дв-я точки д.б.задано: 1)траектория дв-я точки, 2)начало отсчета на траектории, 3)положительное и отрицательное направление отсчета, 4)дуговая абсцисса д.б.задана как ф-ция от времени S=f(t)

Введем единичный орт касательный t. Вектор t направлен в сторону возрастания дуговой абсциссы, модуль êtê=1

Вектор скорости V опр-ся: V=s t.

Если s>0, то скорость направлена в сторону возрастания дуговой абсциссы по вектору t, а если s<0, то вектор скорости напрвлен в сторону убывания дуговой абсциссы.

V=s- алгебраическое зн-е скорости.

Введем элементы диф.геометрии.

Предельное положение пл-ти t1М1t2’ при стремлении М2 к М1 наз-ся соприкасающейся пл-тью.

В каждой точке кривой введем нормальную пл-ть, как пл-ть ^ вектору t.

Пересечение нормальной пл-ти с соприкасающейся пл-тью дает направление главной нормали. Поэтому введем едиинчный орт направления главной нормали n направлена по напр-ю гл.нормали., т.е.по отношению к кривой мы имеем:

Введем 3-й вектор –вектор бинормали в, так что вектора t, n и в составляли правую тройку векторов. Эти три вектора определяют оси естественного трехгранника. С каждой точкой кривой связаны 3 взаимно ^ оси t, n, в

V=dr/dt=(dr/ds)/(ds/dt)=st

ïdr/dsï=ïdrï/ïdsï=1

t направлен в сторону возрастания дуговой абсциссы

Определение ускорения при естественном способе задания дв-я точки

Ускорение W=dv/dt=d(st)/dt=st+s(ds/dt)

Кривизна кривой в данной точке

К=lim(Dj/Ds)=dj/ds

r=1/k=ds/dj-радиус кривизны в пределах при D s®0, вектор dt направлен по направлению нормали.

(tt) =1. Произв.по времени: 2[t (dt/dt)]=0 Þ ^ dt/dt

Вектор dt/dt направлен по нап-ю нормали

çdt/dtç=çdtç/çdtç= dj/ dt= (dj/ ds)( ds/ dt)= s(1/r)

вектор dt/dt= s/r

s(dt/dt)= s 2/r= v2/r

W= st+ (s 2/r), где st= Wt -касат. составляющая ускорения

s 2/r= Wn –норм. сост. ускорения

W=Wt + Wn

W=ÖWt2 + Wn2

Wt -хар-ет изменение скорости по вел-не,

Wn-хар-ет изменение скорости по направлению

Wt направлена по вектору t если s>0 и противоположно вектору t если s<0

Численное зн-е нормального ускорения Wn всегда >0, и оно всегда направлено внутрь области кривой в каждой ее точке.

Если точка движется по прямой, то норм.ускорение точки =0.

Пусть точка движется по окружности с пост. по величине скоростью, чему равно ускорение точки?

V=const

Wt =dv/dt=0

Wn =v2/R

Любую кривую можно представлять в виде совокупности дуг различного радиуса.

Связь между естеств.и коорд.способами задания дв-я.

Ds=Öx2+y2+z2 dt

S=òÖx2+y2+z2 dt

Wt=dv/dt=d(Öx2+y2+z2)/dt=[VxWx+VyWy+VzWz]/V/

x=f1(t)

y= f2(t)

z= f3(t)

t=j1(x) –цилиндр. пов-ть образ.параллель.оси у

y=f2(j1(x)) - цилиндр. пов-ть образ. кот параллель. оси z.

z=f3(j1(x))

Частный случай дв-я точки

1.Равномерное дв-е

v=const, S=So+vt

2.равноускоренное дв-е

Wt =const, V=Vo+ Wt t, S=Vot+ Wt (t2/2)

V2 –Vo2=2 WtS

dV/dt= Wt,

òdV=ò Wt dt, V –Vo= Wtt

Кинематика твердого тела

В теор.механике рассм.только тверд. тела

Абс.тв.тела-это такие тела, раст. между двумя любыми точками не меняются за все время движения

Поступательное дв-е твердого тела -такое дв-е тела, при кот. любая прямая, проведенная в нем остается параллельной самой себе за все время дв-я (самолет, летящий прямолинейно, дв-е поршня в двигателе автомоб., дв-е колеса обозрения)

Теорема: При поступ.движении тв. тела траектории дв-я всех точек тела конгруэнтны, а скорость и ускорение равны.

rв= rА+АВ Поскольку это вып-ся в люб.момент времени, то получается, что траектория т.В можно определить смещением вектора АВ в каждой точке из траектории т.А возм.произв.по времени (АВ=const)

drв/dt= drA/dt+d(AB)/dt

VB=VA. WB=WA.

Вращат. дв-е твердого тела. - такое дв-е тв. тела, при кот-м хотя бы 2 точки тела остаются неподвижными за все время вращения, через эти 2 точки проходит ось вращения, все остальные точки движутся по окружностям в плоскостях перпендик-х оси вращения.

Наши рекомендации