Реакция якоря машины постоянного тока
При работе машины в режиме х.х. ток в обмотке якоря практически отсутствует, а поэтому в машине действует лишь МДС обмотки возбуждения FВ0. Магнитное поле машины в этом случае симметрично относительно оси полюсов (рис. 9, а).График распределения магнитной индукции в воздушном зазоре представляет собой кривую, близкую к трапеции.
Если же машину нагрузить, то в обмотке якоря появится ток, который создаст в магнитной системе машины МДС якоря Fa.Допустим, что МДС возбуждения равна нулю и в машине действует лишь МДС якоря. Тогда магнитное поле, созданное этой МДС, будет иметь вид, представленный на рис. 9, б.Из этого рисунка видно, что МДС обмотки якоря направлена по линии щеток (в данном случае по геометрической нейтрали). Несмотря на то что якорь вращается, пространственное положение МДС обмотки якоря остается неизменным, так как направление этой МДС определяется положением щеток.
Наибольшее значение МДС якоря – на линии щеток (рис. 9, б,кривая 1), а по оси полюсов эта МДС равна нулю. Однако распределение магнитной индукции в зазоре от потока якоря совпадает с графиком МДС лишь в пределах полюсных наконечников. В межполюсном пространстве магнитная индукция резко ослабляется (рис. 9, б, кривая 2). Объясняется это увеличением магнитного сопротивления потоку якоря в межполюсном пространстве.
Влияние МДС обмотки якоря на магнитное поле машины называют реакцией якоря. Реакция якоря искажает магнитное поле машины, делает его несимметричным относительно оси полюсов.
Рис. 9. Магнитное поле машины и распределение магнитной индукции
в воздушном зазоре
На рис. 9, в показано распределение магнитных силовых линий результирующего поля машины, работающей в генераторном режиме при вращении якоря по часовой стрелке. Такое же распределение магнитных линий соответствует работе машины в режиме двигателя, но при вращении якоря против часовой стрелки. Если принять, что магнитная система машины не насыщена, то реакция якоря будет лишь искажать результирующий магнитный поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря совпадает по направлению с МДС возбуждения, подмагничиваются; другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом результирующий магнитный поток как бы поворачивается относительно оси главных полюсов на некоторый угол, а физическая нейтраль mm' (линия, проходящая через точки на якоре, в которых индукция равна нулю) смещается относительно геометрической нейтрали nn' на угол α. Чем больше нагрузка машины, тем сильнее искажение результирующего поля, а следовательно, тем больше угол смещения физической нейтрали. При работе машины в режиме генератора физическая нейтраль смещается по направлению вращения якоря, а при работе двигателем – против вращения якоря.
Искажение результирующего поля машины неблагоприятно отражается на ее рабочих свойствах. Во-первых, сдвиг физической нейтрали относительно геометрической приводит к более тяжелым условиям работы щеточного контакта и может послужить причиной усиления искрения на коллекторе. Во-вторых, искажение результирующего поля машины влечет за собой перераспределение магнитной индукции в воздушном зазоре машины. На рис. 9, в показан график распределения результирующего поля в зазоре, полученный совмещением кривых, изображенных на рис. 9, а, б. Из этого графика следует, что магнитная индукция в зазоре машины распределяется несимметрично относительно оси полюсов, резко увеличиваясь под подмагниченными краями полюсов. Это приводит к тому, что мгновенные значения ЭДС секций обмотки якоря в моменты попадания их пазовых сторон в зоны максимальных значений магнитной индукции (под подмагниченные края полюсных наконечников) резко повышаются. В результате возрастает напряжение между смежными коллекторными пластинами UK.