Заряд,масса и размеры атомных ядер.Зарядовые и массовые числа.Механический момент импульса ядра и его магнитный момент.Состав ядра.Нуклоны.

атомные ядра имеют размеры примерно 10-14 -10-15 м (линейные размеры атома примерно 10~10 м). Атомное ядро состоит из элементарных частиц - протонов и нейтронов(протон-но-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя mp = 1,6726× 10- 27 кг »1836 те, где те - масса электрона. Нейтрон (n) - нейтральная частица с массой покоя тп-1,6749× 10- 27 кг »1839 те. Протоны и нейтроны называются нуклонами(от лат. nucleus - ядро). Общее число нуклонов в атомном ядре называется массовым числом А.

Атомное ядро характеризуется зарядомZe, где Z - зарядовое числоядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.

Ядро обозначается тем же символом, что и нейтральный атом: AZХ, где X - символ химического элемента, Z - атомный номер (число протонов в ядре), А - массовое число (число нуклонов в ядре).

Орбитальный механический момент импульса атома равен геометрической (векторной) сумме орбитальных моментов всех электронов атома: , Z – число электронов.

4. Орбитальный магнитный момент импульса атома равен геометрической (векторной) сумме магнитных моментов всех электронов атома: Нукло́ны (от лат. nucleus — ядро) — общее название для протонов и нейтронов.

С точки зрения электромагнитного взаимодействия протон и нейтрон разные частицы, так как протон электрически заряжен, а нейтрон — нет. Однако с точки зрениясильного взаимодействия, которое является определяющим в масштабе атомных ядер, эти частицы неразличимы, поэтому и был введен термин «нуклон», а протон и нейтрон стали рассматриваться как два различных состояния нуклона, различающихся проекцией изотопического спина. Близость свойств изоспиновых состояний нуклона является одним из проявлений изотопической инвариантности

40 Радиоактивность. Закон радиоактивного распада.Закономерности происхождения α- β- и γ-излучения атомных ядер.Правила смещения

РАДИОАКТИВНОСТЬ-самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения.

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом[3]:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

из чего с помощью теоремы Бернулли учёные сделали вывод[источник не указан 531 день]:

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

которое означает, что число распадов −dN, произошедшее за короткий интервал времени dt, пропорционально числу атомов N в образце.

α -распад.Этот тип распада обычно наблюдается в тяжелых неустойчивых ядрах. При этом разрушается атомное ядро X ("материнское ядро"), образуется α-частица и новое ядро Y ("дочернее ядро"). α-частица представляет собой ядро гелия, имеющее два протона и два нейтрона:
ZXAZ-2YA-4+2α4;2α4=2He4

β-распаднаблюдается в неустойчивых изотопах более легких ядер (гидроген, натрий, азот и т.п.). β -частица испускается материнским ядром и образуется дочернее ядро. Есть три типа β-распада: электронный β- распад, позитронный β- распад и электронный захват.

a) электронный β-распад: из материнского ядра образуется электрон (-1β0-частица). Атомный номер дочернего ядра повышается на единицу по сравнению с материнским ядром. Также образуется антинейтрино – незаряженная частица, практически не имеющая массы - v:
ZXAZ+1YA+-1β0+v
b) позитронный β- распад из материнского ядра испускаются позитрон (+1β-частица) и нейтрино (v). Атомный номер дочернего ядра уменьшается на единицу по сравнению с материнским:
ZXAZ-1YA++1β0+v c) электронный захват. Один из атомных электронов взаимодействует с ядром (чаще всего с К-уровня, но может и сL-, M- уровней) и захватывается им. В результате протон ядра превращается в нейтрон:
ZXA+-1e0= Z-1YA+ v

Явление γ-излучения ядер состоит в том, что ядро (A,Z) испускает g квант без изменения массового числа А и заряда ядра Z. Испускание γ-излучения обычно происходит после α- или β-распадов атомных ядер, если образовавшееся ядро образуется в возбужденном состоянии.

Наши рекомендации