Особенности молекулярного строения жидкостей

Обычные жидкости изотропны, структурно они являются аморфными телами. Для внутреннего строения жидкостей характерен ближний порядок в расположении молекул (упорядоченное расположение ближайших частиц). Расстояния между молекулами невелики, силы взаимодействия значительны, что приводит к 1 малой сжимаемости жидкостей: небольшое уменьшение расстоя­ния между молекулами вызывает появление больших сил межмолекулярного отталкивания.

Подобно твердым телам, жидкости мало сжимаемы и обладают большой плотностью, подобно газам, принимают форму сосуда, в котором находятся. Такой характер свойств жидкостей связан с особенностями теплового движения их молекул. В газах молекулы движутся беспорядочно, на малых отрезках пути — поступательно, в расположении частиц отсутствует какой-либо порядок. В кристаллических телах частицы колеблются около определенных положений равновесия — узлов кристаллической решетки. По теории Я. И. Френкеля молекулы жидкости, подобно частицам твердого тела, колеблются около положений равновесия, однако эти положения равновесия не являются постоянными. По истечении некоторого времени, называемого временем «оседлой жизни», молекула скачком переходит в новое положение равновесия на расстояние, равное среднему расстоянию между соседними молекулами.

Вычислим среднее расстояние между молекулами жидкости. Можно мысленно представить весь объем жидкости разделенным на небольшие одинаковые кубики с ребром 8. Пусть в среднем в каждом кубике находится одна молекула. В этом случае 5 можно рассматривать как среднее расстояние между молекулами жидкости. Объем жидкости равен V = δ3N, где N — общее количество молекул жидкости. Если n — концентрация молекул (количество молекул в 1 м3), то N = nV. Из этих уравнений получаем

 
  Особенности молекулярного строения жидкостей - student2.ru

Порядок величины 5 составляет 10 -10 м, например, для воды δ= 3 • 10-10 м.

Среднее время «оседлой жизни» молекулы называют време­нем, релаксации τ. С повышением температуры и понижением дав­ления время релаксации сильно уменьшается, что обусловливает большую подвижность молекул жидкости и меньшую ее вязкость.

 
  Особенности молекулярного строения жидкостей - student2.ru

Для того чтобы молекула жидкости перескочила из одного по­ложения равновесия в другое, должны нарушиться связи с окру­жавшими ее молекулами и образоваться связи с новыми соседя­ми. Процесс разрыва связей требует затраты энергии Еа (энергии активации), выделяемой при образовании новых связей. Такой переход молекулы из одного положения равновесия в другое яв­ляется переходом через потенциальный барьер высотой Еа. Энергию для преодоления потенциального барьера молекула по­лучает за счет энергии теплового движения соседних молекул. За­висимость времени релаксации от температуры жидкости и энер­гии активации выражается формулой, вытекающей из распреде­ления Больцмана (см. § 2.4).

Где τ0 — средний период колебаний молекулы около положения равновесия.

 
  Особенности молекулярного строения жидкостей - student2.ru

Зная среднее перемещение молекулы, равное расстоянию меж­ду молекулами δ, и среднее время τ, можно определить среднюю скорость движения молекул в жидкости:

Эта скорость мала по сравнению со средней скоростью движе­ния молекул в газе. Так, например, для молекул воды она в 20 раз меньше, чем для молекул пара при той же температуре.

Поверхностное натяжение

На поверхностях раздела жидкости и ее насыщенного пара, двух несмешиваемых жидкостей, жидкости и твердого тела воз­никают силы, обусловленные различным межмолекулярным вза­имодействием граничащих сред.

Особенности молекулярного строения жидкостей - student2.ru Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю. На молекулу, находящуюся вблизи границы двух сред, вследствие неоднород­ности окружения действует сила, не скомпенсированная другими молекулами жидкости. Поэтому для переме­щения молекул из объема в поверхностный слой необходимо совершить работу.

Поверхностное натяжение (коэффициент поверхностного натяжения) определяется от­ношением работы, затраченной на создание некоторой поверхности жидкости при посто­янной температуре, к площади этой поверхности:

Особенности молекулярного строения жидкостей - student2.ru

Условием устойчивого равновесия жидкостей является мини­мум энергии поверхностного слоя, поэтому при отсутствии внеш­них сил или в состоянии невесомости жидкость стремится иметь Минимальную площадь поверхности при данном объеме и прини­мает форму шара.

Поверхностное натяжение может быть определено не только энергетически. Стремление поверхностного слоя жидкости сокра­титься означает наличие в этом слое касательных сил — сил по­верхностного натяжения. Если выбрать на поверхности жид­кости некоторый отрезок длиной l (рис. 7.8), то можно условно изобразить эти силы стрелками, перпендикулярными отрезку.

Поверхностное натяжение равно отношению силы поверхност­ного натяжения к длине от

 
  Особенности молекулярного строения жидкостей - student2.ru

резка, на котором действует эта сила:

Из школьного курса физики известно, что оба определения, (7.21) и (7.22), тождественны. Приведем значения поверхностно­го натяжения для некоторых жидкостей при температуре 20 °С ((табл. 15).

Таблица 15

Жидкость σ, Н/м Жидкость σ, Н/м
  Вода Желчь Молоко Моча   0,0725 0,048 0,05 0,66   Ртуть Спирт Сыворотка крови Эфир   0,47 0,022 0,06   0,017

Поверхностное натяжение зависит от температуры. Вдали от критической температуры значение его убывает линейно при уве­личении температуры. Снижения поверхностного натяжения Можно достигнуть введением в жидкость поверхностно-активных веществ, уменьшающих энергию поверхностного слоя.

Наши рекомендации