Намагниченность. Магнитное поле в веществе
Подобно тому, как для количественного описания поляризации диэлектриков вводилась поляризованность (см. §88), для количественного описания намагничения магнетиков вводят векторную величину — намагниченность,определяемую магнитным моментом единицы объема магнетика:
J=pm/V=Spa/V,
где pm=Sра— магнитный момент маг-нетика, представляющий собой векторную сумму магнитных моментов отдельных молекул (см. (131.6)).
Рассматривая характеристики магнитного поля (см. §109), мы вводили вектор магнитной индукции В, характеризующий результирующее магнитное поле, создаваемое всеми макро- и микротоками, и вектор напряженности Н, характеризующий магнитное поле макротоков. Следовательно, магнитное поле в веществе складывается их двух полей: внешнего поля, создаваемого током, и поля, создаваемого намагниченным веществом. Тогда вектор магнитной индукции результирующего магнитного поля в магнетике равен векторной сумме магнитных индукций внешнего поля В0 (поля, создаваемого намагничивающим током в вакууме) и поля микротоков В' (поля, создаваемого молекулярными токами):
В = В0+В',(133.1)
где В0=m0Н (см. (109.3)).
Для описания поля, создаваемого молекулярными токами, рассмотрим магнетик в виде кругового цилиндра сечения S и длины l, внесенного в однородное внешнее магнитное поле с индукцией Во. Возникающее в магнетике магнитное поле молекулярных токов будет направлено противоположно внешнему полю для диамагнетиков и совпадать с ним по направлению для парамагнетиков. Плоскости всех молекулярных токов расположатся перпендикулярно вектору Во, так как векторы их магнитных моментов рm антипараллельны вектору В0 (для диамагнетиков) и параллельны Во (для парамагнетиков). Если рассмотреть любое сечение цилиндра, перпендикулярное его оси, то во внутренних участках сечения магнетика молекулярные токи соседних атомов направлены навстречу друг другу и взаимно компенсируются (рис. 189). Нескомпенсированными будут лишь молекулярные токи, выходящие на боковую поверхность цилиндра.
Ток, текущий по боковой поверхности цилиндра, подобен току в соленоиде и создает внутри него поле, магнитную индук-
цию В' которого можно вычислить, учитывая формулу (119.2) для N=1 (соленоид из одного витка):
В' = m0I'/l (133.2)
где I' — сила молекулярного тока, l — длина рассматриваемого цилиндра, а магнитная проницаемость m принята равной единице.
С другой стороны, I'/l — ток, приходящийся на единицу длины цилиндра, или его линейная плотность, поэтому магнитный момент этого тока p=I'lS/l=I'V/l, где V — объем магнетика. Если Р — магнитный момент магнетика объемом V, то P/V — намагниченность магнетика J. Таким образом,
J= I'/l. (133.3)
Сопоставляя (133.2) и (133.3), получим, что
B'=m0J,
или в векторной форме
B'=m0J.
Подставив выражения для В0 и В'в (133.1), получим
В =m0Н+m0J, (133.4) или
B/m0=H+J. (133.5) Как показывает опыт, в несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничение, т. е.
J=cH, (133.6)
где c — безразмерная величина, называемая магнитной восприимчивостью вещества.Для диамагнетиков c отрицательна (поле молекулярных токов противоположно внешнему), для парамагнетиков — положительна (поле молекулярных токов совпадает с внешним).
Используя формулу (133.6), выражение (133.4) можно записать в виде
В = m0(1+c)Н, (133.7) откуда
Н=B/m0(1+c).
Безразмерная величина
m=1+c (133.8)
представляет собой магнитную проницаемость вещества. Подставив (133.8) в (133.7), придем к соотношению (109.3) В=m0mН, которое ранее постулировалось.
Так как абсолютное значение магнитной восприимчивости для диа- и парамагнетиков очень мало (порядка 10-4— 10-6), то для них m незначительно отличается от единицы. Это просто понять, так как магнитное поле молекулярных токов значительно слабее намагничивающего поля. Таким образом, для диамагнетиков c<0 и m<1, для парамагнетиков c>0 и m>1.
Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В)является обобщением закона (118.1):
где I и I' — соответственно алгебраические суммы макротоков (токов проводимости) и микротоков (молекулярных токов), охватываемых произвольным замкнутым контуром L. Таким образом, циркуляция вектора магнитной индукции В по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, таким образом, характеризует результирующее поле, созданное как макроскопическими токами в проводниках (токами проводимости),
так и микроскопическими токами в магнетиках, поэтому линии вектора магнитной индукции В не имеют источников и являются замкнутыми.
Можно доказать, что циркуляция намагниченности J по произвольному замкнутому контуру L равна алгебраической сумме молекулярных токов, охватываемых этим контуром:
Тогда закон полного тока для магнитного поля в веществе можно записать также в виде
где I, подчеркнем это еще раз, есть алгебраическая сумма токов проводимости.
Выражение, стоящее в скобках в (133.9), согласно (133.5), есть не что иное, как введенный ранее вектор Н напряженности магнитного ноля. Итак, циркуляция вектора Н по произвольному замкнутому контуру L равна алгебраической сумме токов проводимости, охватываемых этим контуром:
Выражение (133.10) представляет собой теорему о циркуляции вектора Н.