Основы химико–термической обработки

Возможное существования металлов в различных кристаллизационных модификациях называется полиморфизмом или аллотропией. При определенных условиях, атомы, образующие кристаллическую решетку одного типа, перестраиваются с образованием кристаллической решетки другого типа. По сути это кристаллизационный процесс, т.к. перенастройка решетки из одного типа в другой происходит при постоянной температуре. Однако, т.к. этот процесс имеет место в твердом состоянии его называют перекристаллизацией. К полиморфным металлам относятся: железо, олово, титан, марганец, кобольт.

При переходе метала из жидкого состояния в кристаллическое образуются кристаллы. Процесс этот называется кристаллизацией. Металл стремиться перейти в термодинамически более устойчивое состояние с меньшей свободной энергией.

Основы химико–термической обработки - student2.ru F - изменение свободной энергии системы.

Исходя из вышесказанного меньше свободной энергии после нагрева выше температуры TS является жидкое состояние, ниже температуры TS кристаллическое. Температура TS называется теоретической температурой плавления (кристаллиз.). Однако ни процесса плавления ни процесса рекристаллиз. при этой температуре проходить не может т.к. свободные энергии при TS жидкого и кристаллич. состояния будут равны: Fж = Fкр . Для того, чтобы пошел процесс рекристаллиз. металл необходимо переохладить относительно теоретической температуры TS. В этом случае свободная энергия кристалл. состояния будет меньше по-сравнению с жидк. состоянием.

Температура, при которой фактически осуществляется процесс кристаллизации называется фактическими температурами кристаллиз. Разность между этими температурами называется степенью переохлаждения.

Основы химико–термической обработки - student2.ru На кривой охлаждения полученной при кристаллизации металла в момент появления 1-го кристалла в жидкости температура стабилизировалась. Площадка на кривой охлаждения имеет место до тех пор, пока последняя капля жидкости не исчезнет. Последующее охлаждение осуществляется уже в твердом состоянии за счет конвективного теплообмена.

Кривая 1 имеет температуру TS, однако в реальных условиях для протекания процесса кристаллизации металл необходимо переохладить ниже TS. Tкр - фактическая температура. TS - TК - переохлаждение.

Появление площадки на кривой охлаждения обусловлено тем, что в момент появления первых кристаллов выделяется скрытая теплота кристаллизации, которая и компенсирует охлаждение.

Процесс кристаллизации металлов состоит из двух стадий:

а) из стадии зарождения центров кристаллизации

б) из стадии их роста

Для жидкого состояния характерен ближний порядок в расположении атома. Атомы располагаются не хаотически, как в газообразном состоянии и не закономерно, т.е. в определенных узлах кристаллической решетки, как в твердом состоянии. Ближний порядок характеризуется тем, что атомы в микрообъемах жидкости располагаются так, как в твердом состоянии. Однако эти объемы могут рассасываться и возникать вновь. Чем ниже температура, тем больше в жидкости таких микрообъемов. При определенных условиях эти микрообъемы и являются центром кристаллизации. Однако не все центры способны к росту. Если размер центра (зародыша) меньше какой-то величины для данной степени переохлаждения, то этот зародыш растворяется, если больше, то он растет. Минимальный размер зародышей склонных к росту при данной степени переохлаждения, называется критическим и такой зародыш является устойчивым. Чем больше степень переохлаждения, тем меньший размер зародыша способен к росту. Рост зародышей осуществляется путем последовательного присоединения к ним атомов из окружающей жидкости.

Присутствие примеси в металле облегчает процесс центров кристаллизации, т.к. примесь является подложкой, на которой происходит зарождение центров.

Атомно-кристаллическая структура металлов. Виды структур. Способы изображения

Металлы, описываемые пространственной кристаллической решеткой, под которой понимают наименший комплекс атомов, при многократной трансляции которых по всем направлениям воспроизводится пространственная кристаллическая решетка.

В узлах кристаллической решетки располагаются атомы.

Пространственную кристаллическую решетку легче всего представить в виде элементарной кристаллической ячейки. Ячейка – это та часть решетки, при многократной трансляции которой она и воспроизводится.

Три основные вектора элементарной ячейки называются трансляционными плоскими осевыми единицами.

Абсолютная величина трансляции – это период кристаллической решетки.

Период кристаллической решетки измеряют в анкстреммах

1А=10-8 см или в кХ (килоиксах), так называемых кристаллографических анкстреммах.

1кХ=1,00202 А

На одну элементарную ячейку приходится различное количество атомов; при чем атомы занимают определенные места в ячейке.

Основы химико–термической обработки - student2.ru В зависимости от расположения атомов в ячейке различают простые, кубические, объемно-центрированные кубические, гранецентрированные кубические, гексагональные решетки.

Основы химико–термической обработки - student2.ru 1.Простая решетка представляется в виде куба, в узлах которой располагаются атомы.

Простейшая решетка описывается одним параметром, которым является ребро куба а.

Основы химико–термической обработки - student2.ru 2.Объемно-центрированная кубическая решетка (ОЦК) представляет собой также куб, внутри которого дополнительно расположен еще один атом.

Параметры решетки определяются длиной ребра куба а.

Основы химико–термической обработки - student2.ru 3.Гранецентрированная кубическая решетка (ГЦК) представляет собой куб, В центре каждой грани которого расположены дополнительно по одному атому.

Основы химико–термической обработки - student2.ru 4.Гексагональная плотно упакованная решетка. В отличие от кубической характеризуется двумя параметрами а и с.

В случае, если отношение с/а=1,666, то решетка считается плотноупакованной, а иначе – неплотно упакованной.

Примеры:

ОЦК – вольфрам, молибден, железо Fea;

ГЦК – алюминий, медь, никель, железо Feg;

ГПУ – бериллий … .

Некоторые металлы, например индий, имеют тетрагональную решетку.

Свойства металлов при прочих равных условиях определяются типом кристаллической решётки, т.е. количеством атомов, приходящихся на одну элементарную ячейку. На простую ячейку приходит с один полный атом.

Основы химико–термической обработки - student2.ru На ОЦК ячейку приходится два атома: один атом вносится атомом и один принадлежит только этой ячейке.

Для ВЦК на одну ячейку приходится четыре атома.

Плотность кристаллической решетки определяется, так называемым координатным числом. Под координатным числом понимается число атомов, находящихся на кратчайшем расстоянии от данного атома. Для ОЦК решетки К=8, для ГЦК – К=12 и для ГПУ – К=12.

От величины координатного числа зависит компактность (плотность укладки) кристаллической решетки. Так в простой кристаллической решетки плотность укладки атомов в ячейке составляет менее 50%. В ОЦК – 50%, в решетках с координатным числом 12 – порядка 75%.

Химикотермическая обработка сталей. Виды, назначение.

Основы химико–термической обработки

Под химико–термической обработкой понимают насыщение поверхности металла элементами повышающими какие–либо свойства. Например: твердость, износостойкость, морозостойкость, коррозионную стойкость.

Поверхностная обработка обеспечивает хорошее сочетание твердости поверхностного слоя детали с вязкостью сердцевины. Для обеспечения такого сочетания кроме химико–термической обработки применяют и поверхностную закалку, которая относится к разряду местной обработки. Поверхность детали нагревают пламенем ацетилено–кислородной горелки или чаще током высокой частоты(ТВЧ). Нагрев ТВЧ осуществляется в 1000 раз быстрее по сравнению со скоростью нагрева в печах или в ваннах. После нагрева следует охлаждение со скоростью выше критической.

Нагрев ТВЧ обеспечивает прогрев до температур выше критической только поверхностного слоя. Сердцевина детали остается не прогретой => после закалки на поверхности формируется структура мартенсита, тогда, как в сердцевине детали структура характерна структуре отожженной стали. В отличие от поверхностной закалки ХТО имеет ряд преимуществ:

1.ХТО можно подвергать детали независимо от их размеров или форм.

2.При ХТО достигается большая разница в свойствах поверхности и серцевины.

3.После ХТО можно исправить структуру(например: изменить зерно) последующей термической обработки.

Процесс ХТО складывается из 3–х составных:

1.распад молекул газа с образованием активных атомов насыщенного элемента. Это диссоциация.

2.Поглощение атомов насыщенного элемента поверхностью детали–абсорция.

3.Диффузия атомов насыщенного элемента в глубь металла.Различают:

a) Самодиффузию – происходит перескок атомов основного металла в собственность кресталической решетки. Он не сопровождается изменением концентрации вещества.

б) Гедротиффузию–происходит перемещение атомов чужеродного элемента к кресталлической решетке основного металла, сопровождается изменением концентрации диффундизующего элемента от поверхности в сердцевине в сторону уменьшения.

Вид ХТО определяется названием диффузирующего элемента. Если насыщают поверхность детали углеродом, процесс называют цеминтацией, азотом–ахотированием и т.д. совместное насыщение углеродом и азотом­–ционированием.

Цементация

Процесс насыщения поверхности изделия углеродом. Цементация повышает тверость и износостойкость поверхности детали при сохранении вязкости сердцевины. Различают твердую и газовую цементацию. При твердой цементации в ящик заполненный науглеражущим веществом(карбюризатором) и специальными добавками размещают детали. В качестве карбюризатора используют древесный уголь. пРи температуре процесса(900-950 градусах Цельсия) кислород воздуха, расположенного между кусочками угля взаимодействует с углеродом с образования окиси углерода СО. Именно СО, а не СО2 т.к. процесс идет при недостаточном колличестве кислорода. При контакте окиси углерода с металической поверхностью происходит реакция диссоциации при которой окись углерода распадается на СО2+реакция диссоциации с образованием активных атомов углерода, кат. диффунд. 2СО2->СО2

поверхность металла. В качестве добавок к карбюризатору используют соли: СО3, Na2CO3, K2CO3, являющиеся дополнительным поставщиком окиси углерода.

Процесс твердой цементации является мало производительным и занимает не один десяток часов. Это связанно с тем, что значительная часть времени тратится на прогрев ящика до заданной температуры т.к. корбюризатор является не теплопроводным веществом.

Эффективнее способ газовой цементации.

В этом случае и/з камеру зазмещенные в ней детали пропускают науглераживающий газ или СО или, что чаще предельные углеводороды(метан, этан, пропан, гексан, октан, нонан, декан). В производстве чаще свего используется природный газ, содержащий до 93-95% группы СН4. При цементации тщательно регломентируют подачу газа. В случае избытка количества газа на поверхности детали оседает слой сажи т.к. не весь углерод может усваиваться поверхностью детали. Температуру цементации не выбирают ниже АС1 т.к. ферит практически не растворяет углерод. Процесс осуществляют выше АС3, а именно при температурах 900–930 градусах Цельсия. После цементации структура по сечению детали не однородна. На ковкости структура соответствующая структуре заэвтектоидной стали. Далее структура эвтектоидной стали(перлит), а затем структура доэтектоидной стали(Ф+П). За толщину слоя принимают толщину заэвт. эвт. и половину доэвт. зоны. Окончательные свойства формируются после термической обработки. Термообработка обеспечивает измельчение зерна неизбежно выросшего в процессе выдержки при высокой температуре. Устранение цементной сетки.

Термообработка заключается в закалке с температурой 820–840 градусах Цельсия и низком отпуске при температурах 60–64HRC, легированных 57–60HRC.

Маленькая твердость после ХТО легированных сталей обусловлена повышенным содержанием в структуре аустенита остаточного, для утранения которого после закалки, иногда проводят обработку холодом.

Для цементироания применяют стали с низким содержанием углерода 0.15–0.25%.

Азотирование стали

ХТО - это вит обработки, при котор имеется состав и и св-ва поверхностных слоев Ме. Прим для деталей работающих на износ, когда нужно чтобы поверх-ть была прочной, а сердцевина оставалась вязкой. Процесс ХТО состоит из 3-х стадий: диссоциация – происход в газовой среде когда выделяется активный элемент. Абсорбция – происходит на границе газа и Ме и заключается в поверхностными слоями Ме свободных атомов. Этот процесс возможен только тогда, когда свободные атомы способны растворяться в Ме. Диффузия – проникновение насыщающего элемента в глубь. Т.к. скорость диффузии в тверд состоянии мала, то процессы эти длительные и могут продолжаться при азотировании несколько десятков часов. Азотирование – насыщение поверх азотом. После азот-я поверхност слой приобретает более высокую твердость, чем после цементации, в связи с образованием мелких и твердых нитридов. Азотирование произв-ся после механ обработки и терм обраб. Т.о. перед азотированием заключается в закалке и последующем высоком отпуске. А проводят при t 500-550, поскольку t более низкая, чем при цементации, то процесс более длительный. Твердые нитриды получ-ся, если в сталь добавить спец легир элементы, такие как Al, молибден. Стали, содержащие набор таких элементовспец разработанных для азотирования наз-ся нитралои. Если азотир обычные углеродстые стали, то твердость нитридов невысокая, и при t 500 они быстор коагулируют.

Цианирование

Нитроцементация и цианирование. Диффузионная металлизация.

ХТО - это вит обработки, при котор имеется состав и и св-ва поверхностных слоев Ме. Прим для деталей работающих на износ, когда нужно чтобы поверх-ть была прочной, а сердцевина оставалась вязкой. Процесс ХТО состоит из 3-х стадий: диссоциация – происход в газовой среде когда выделяется активный элемент. Абсорбция – происходит на границе газа и Ме и заключается в поверхностными слоями Ме свободных атомов. Этот процесс возможен только тогда, когда свободные атомы способны растворяться в Ме. Диффузия – проникновение насыщающего элемента в глубь. Т.к. скорость диффузии в тверд состоянии мала, то процессы эти длительные и могут продолжаться при азотировании несколько десятков часов.Нитроцементация – процесс одновременного насыщения углеродом и азотом. Этот процесс проводиться при t 840-860. t-ра более низкая в газовой среде, состоящей из науглероживающего газа и аммиака. В этой среде процесс насыщения углерода идет более интенсивно. Продолжит процесса от 4 до 10 часов. Последующая закалка может осущ-ся прямо из печи с небольшим подстуживанием. Реже прим-ся двойная закалка. Цианирование – это процесс насыщения углеродом и азотом в следствии окисления расплавленных цианистых солей. t-ра 820-960, в расплавлен солях содержащих цианистый натрий. Для получения слоя небольшой толщины от 0,15-0,3 мм цианирование производят при t 820-860 в течении 30-90 мин. Поледующ закалку и низкий отпуск проводят сразу после цианирования. Для получения большего слоя от 0,5-2мм, t цианирования составляет 930-960. время выдержки от 1,5-6 часов. При этих T сталь в больших степенях насыщается углеродом до 0,8-2%. После такого режима деталь охлаждается на воздухе а затем под закалку нагревают в соленых ваннах, после чего подвергаются низкому отпуску.

Диффузионная металлизация. Целью д м является насыщение поверхностных слоев стали различными элементами с целью повышения коррозионной стойкости, повышения твердости, усталостной прочности. Насыщение производят хромом. Процесс наз-ся хромированием, кремнием – сицилированием, Al – алиторованием, бором – борированием, при борировании резко повышается твердость поверх-х слоев, их износостойкость. Процесс борирования очень капризный, он требует четкого соблюдения технологии.

Цементация сталей. Назначение, этапы, диффузионные процессы и режимы.

Процесс насыщения поверхности изделия углеродом. Цементация повышает тверость и износостойкость поверхности детали при сохранении вязкости сердцевины. Различают твердую и газовую цементацию. При твердой цементации в ящик заполненный науглеражущим веществом(карбюризатором) и специальными добавками размещают детали. В качестве карбюризатора используют древесный уголь. пРи температуре процесса(900-950 градусах Цельсия) кислород воздуха, расположенного между кусочками угля взаимодействует с углеродом с образования окиси углерода СО. Именно СО, а не СО2 т.к. процесс идет при недостаточном колличестве кислорода. При контакте окиси углерода с металической поверхностью происходит реакция диссоциации при которой окись углерода распадается на СО2+реакция диссоциации с образованием активных атомов углерода, кат. диффунд. 2СО2->СО2

поверхность металла. В качестве добавок к карбюризатору используют соли: СО3, Na2CO3, K2CO3, являющиеся дополнительным поставщиком окиси углерода. Процесс твердой цементации является мало производительным и занимает не один десяток часов. Это связанно с тем, что значительная часть времени тратится на прогрев ящика до заданной температуры т.к. корбюризатор является не теплопроводным веществом.

Эффективнее способ газовой цементации.

В этом случае и/з камеру зазмещенные в ней детали пропускают науглераживающий газ или СО или, что чаще предельные углеводороды(метан, этан, пропан, гексан, октан, нонан, декан). В производстве чаще свего используется природный газ, содержащий до 93-95% группы СН4. При цементации тщательно регломентируют подачу газа. В случае избытка количества газа на поверхности детали оседает слой сажи т.к. не весь углерод может усваиваться поверхностью детали. Температуру цементации не выбирают ниже АС1 т.к. ферит практически не растворяет углерод. Процесс осуществляют выше АС3, а именно при температурах 900–930 градусах Цельсия. После цементации структура по сечению детали не однородна. На ковкости структура соответствующая структуре заэвтектоидной стали. Далее структура эвтектоидной стали(перлит), а затем структура доэтектоидной стали(Ф+П). За толщину слоя принимают толщину заэвт. эвт. и половину доэвт. зоны. Окончательные свойства формируются после термической обработки. Термообработка обеспечивает измельчение зерна неизбежно выросшего в процессе выдержки при высокой температуре. Устранение цементной сетки. Термообработка заключается в закалке с температурой 820–840 градусах Цельсия и низком отпуске при температурах 60–64HRC, легированных 57–60HRC.Маленькая твердость после ХТО легированных сталей обусловлена повышенным содержанием в структуре аустенита остаточного, для утранения которого после закалки, иногда проводят обработку холодом. Для цементироания применяют стали с низким содержанием углерода 0.15–0.25%.

Общие характеристики металлов

под Ме понимают в-ва, обладающие характерным блеском, в той или иной степени присущей всем Ме, и пластичностью. Кроме того все Ме обладают высокой электро- и теплопроводностью, положительным темпер коэфф-м линейного расширения, термоэлектронной эмиссией, около 30 Ме сверхпроводимостью Наличие этих св-в характеризуют Ме состояние в-ва. Для Мех харак-ны Ме связи, кот-е возникают при образовании из внешних электронов(ел-в) «-» заряженный эл-й газ. В рез-те чего «+» ионы образуют плотную, но пластичную крист.реш-ку. При Ме связи м/у ионами и Эл-м газом возникают электростатич-е силы притяжения, кот-е связывают ионы. Ионы в тв.Ме расположены на таком расстоянии друг от друга, в кот-х силы взаимного притяжения и отталкивания= Основоположником материалов стал П.П.Аносов – раскрыл секрет булатной стали, применил микроскоп, работал над качеств. сталью. Научный основопол-к матер-ия Д.К.Чернов – обнаружил, что в процессе нагрева и последующего охлаждения изм-ся стр-ра стали, обнаружил диапазон этих температур(критические точки Чернова), сделал наброски диаграммы Fe-C.

Материаловедение – это наука, изучающая строение и свойства металлов и устанавливает связь между составом, структурой и свойствами.

Определение металлам дают с точки зрения той науки, с позиции которой ее рассматривают.

Металлы с точки зрения физики и техники обладают общностью атома кристаллического строения и характерными физическими свойствами. Если специально приготовленный образец подвергнуть растяжению на машине и записать на диаграммной ленте все изменения, которые будут происходить с ним, то получим кривую, которая называется кривой растяжения.

Основы химико–термической обработки - student2.ru В первоначальный момент образец растягивается без деформации, т.е. в упругой области. Это имеет место при напряжении sпц. При растяжении большем sпц. Пропорциональность степени напряжения и деформации нарушается.

sпц – получила название предел пропорциональности, который равен:

sпцпц/Fо, Мпа

При деформации металла, в процессе повышения нагрузки, на кривой растяжения может появиться площадка, нагрузка при которой металл деформируется без приложенных дополнительных усилий, называется пределом текучести (физический):

sтт./F о, МПа

Деформированием сплавов, у которых отсутствует площадка текучести вводят характеристику, называемую условным пределом текучести.

s02 – это усилие, которое вызывает остаточную деформацию 0,2%;

sв – предел прочности на растяжение – это максимальная нагрузка, предшествующая разрушению образца.

Помимо характеристик прочности из кривой растяжения можно выделить характеристики пластичности:

d - относительное удлинение;

y - относительное сужение.

Основы химико–термической обработки - student2.ru Основы химико–термической обработки - student2.ru

К характеристикам прочности материалов относятся также и твердость. Под твердостью понимается сопротивление материалов проникновению в него посторонних тел (индентора).

Из наиболее распространенных методов измерения твердости металлических материалов можно выделить метод измерения твердости по Бренеллю, по Роксвеллу и по Виккерсу. В случае если необходимо измерить твердость отдельных структурных составляющих, применяют метод измерения микро-твердости.

Твердость по Бренеллю измеряют на прессе Бренелля. В качестве индентора применяют шарик 5-10 мм. К индентору прилагается нагрузка. После снятия нагрузки в месте вдавливания появляется лунка. С помощью лунки измеряют диаметр лунки и затем по соответствующим таблицам переходят от диаметра к числу твердости. Твердость по Бренеллю обозначается НВ. Этот метод измерения твердости используется для измерения твердости сравнительно мягких металлов.

Измерение твердости по Роксвеллу проводят на приборе – твердометр Роксвелла. В качестве индентора используют шарик или алмазную пирамиду. Нагрузка на индентор 60,100 и 150 кг. В случае приложения 60 и 150 кг индентором служит алмазная пирамида, при 100 кг – шарик. Обозначение твердости по Роксвеллу если индентор 60 кг – HRA, 100 кг – HRB, 150 – HRCэ.

Твердость по Виккерсу определяется на приборе Виккерса. В качестве индентора используют алмазную пирамидку. Нагрузка на индентор измеряется в граммах. Твердость определяется на специально приготовленных образцах микрошлиф.

После вдавливания и снятия нагрузки с индентора в микрошлифе остается лунка. С помощью линейку, встроенной в окуляр прибора и затем с помощью специальных таблиц переходят от диагонали отпечатки к числу твердости по Виккерсу HV.

Если необходимо измерить твердость отдельных структурных составляющих, используют метод измерения микро-твердости на ПМТ-приборах.

В качестве индентора также используют алмазную пирамидку. Нагрузка на индентор измеряется в граммах. Твердость определяют на микрошлифах. При увеличении в 400 раз на микрошлифах находят ту структурную составляющую, твердость которой необходимо определить. Под действием нагрузки индентор вдавливается в эту структурную составляющую и оставляет в ней отпечаток. После снятия нагрузки проводят измерение диагонали отпечатка и затем по таблицам переходят к числу твердости.

Ударная вязкость является динамической характеристикой. Образец помещается в крепление и с определенной высоты на него падает маятник, работа тратиться на разрушение образца; ударная вязкость обозначается КСU или КС. Обозначение зависит от формы образца, если образец с подрезом (U-образным), то принимается первое обозначение, если без надреза – второе. С надрезом изготавливаются образцы сравнительно вязких материалов, без надреза – хрупких материалов

Дефекты кристаллической решетки. Виды, причины образования и их влияние на свойства металлов.

Реальные металлы в своей структуре содержат дефекты, которые подразделяются на точечные, линейные и поверхностные.

Точечные дефекты возникают при воздействии тепловых или силовых нагрузок. Атомы, находящиеся в узлах кристаллической решетки колеблются. В любой момент в кристалле всегда проявляются атомы, имеющие большую энергию по сравнению с близлежащими атомами. При чем этой энергии хватает не только на то, чтобы атомы вышел из своего узла, но и на то, чтобы он преодолел потенциальные барьеры, выстраиваемые на его пути близлежащими атомами.

В результате узел, из которого вышел атом, остается вакантным. Этот дефект получил название – вакансия. Вышедший атом, попавший в междоузлие – также дефект, получивший название дислоцированный атом.

Как в первом, так и во втором случаях кристаллическая решетка искажается вокруг дефекта на несколько атомных периодов.

Вокруг вакансий решетка как бы искажается, пытаясь залечить вакансию, а вокруг дислоцированного атома – наоборот. Вакансию иначе называют «дыркой».

Линейные дефекты. В отличие от точечных линейные дефекты имеют большую протяженность в одном направлении и малое искажение решетки в других. Линейные дефекты получили название – дислокации.

Основы химико–термической обработки - student2.ru Дислокации бывают краевые и винтовые.

Краевая дислокация представляет собой локализованное искажение атомной плоскости за счет введения в нее дополнительной атомной полуплоскости – экстра плоскости, расположенной перпендикулярно плоскости чертежа.

Так же есть и винтовая дислокация; искажение происходит по винтовой плоскости.

Важной характеристикой дислокации является плотность дислокации; представляющая собой суммарную длину дислокации в единице объема ( Основы химико–термической обработки - student2.ru )

В наиболее совершенных кристаллах плотность дислокации равна Основы химико–термической обработки - student2.ru = 106…108 см-2.

В деформированных Основы химико–термической обработки - student2.ru = 106...108см-2

Поверхностные дефекты. К ним относятся границы зерен, фрагментов, блоков.

Если под микроскопом наблюдать микроструктуру металла, то видно, что металл состоит из отдельных зерен, т.е. имеет место зеренное строение. Наиболее дефектные участки в структуре – границы зерен, т.е. места стыка зерен. По границе, помимо примесей, концентрируются и дефекты кристаллической решетки: вакансии и дислокации. Однако зерно само по себе не является совершенным. Оно состоит как бы из мозаики отдельных блоков 10-5…10-6 см. Это так называемые блоки мозаики.

Граница стыков между блоками так же являются дефектными участками в структуре. Блоки можно наблюдать только с помощью электронного микроскопа, увеличивающего в десятки тысяч раз.

Блоки разориентированы друг относительно друга на угол в несколько минут. Блоки могут объединяться в более крупные образования, которые получили названия фрагменты.

5. Роль дислокации в упрочнении Ме. Способы повышения прочности Ме и сплавов.

Велико влияние дислокаций на прочность кристаллов. Благодаря дислокациям экспер. Определ предел текучести Ме в 1000 раз больше теоретич значения. При значит увелич плотности дислок и уменьшении их подвижности прочность увел в неск-ко раз по сравнению с отожженным состоянием. Плотность бездефектных участков приближ к теоретич. В полупр дислок влияют на электрические и другие св-ва считают электрич сопротивление. Уменьш время носителей значение дисл особенно возрастает в микроэлектронике, где применяют тонкие пленочные кристаллы, и дисл играют роль тонких проводящих каналлов, вдоль которых легко перемещ-ся атомы примеси. Причины упрочнения:

Увеличение плотности дислок(происходит уменьшение их свободн длины прбега, возник напряж, увелич прочн-и, твердости матер)

Выпадение субмикроскоп элементов по плоскостям скольжения.

Дислакац барьеры

ХПД за счет уплотнени дислокаций

Легир-ть (тв раствор внедрения дисл упрочн.)

Отжиг.Назначение, структурные превращения и механические свойства отожженных сталей.

Основными видами термической обработки, различно изме­няющими структуру и свойства стали и назначаемыми в зависи­мости от требований, предъявляемых к полуфабрикатам (отлив­кам, поковкам, прокату и т. д.) и готовым изделиям, являются отжиг, нормализация, закалка и отпуск.

1. ОТЖИГ I РОДА Отжиг I рода в зависимости or исходного состояния стали и температуры ею выполнения может включать процессы гомогенизации, рекристаллизации, снижения твердости ,, снятия остаточных напряжений. Характерная особенность итого вида отжига в том, что указанные процессы происходят независимо от того, протекают ли в сплавах при этой обработке фазовые превращения (а - у) или нет, Поэтому отжиг 1 рода можно про­водить при температурах выше или ниже температур фазовых превращений (критических точек А1 и А3). Этот вид обработки в зависимости от температурных условий его выполнения устраняет химическую или физическую неодно­родность, созданную предшествующими обработками. Бывает: Гомогенизация (диффузионный отжиг). Рекристаллизацконный отжиг . Высокий отпуск (для уменьшения твердости) Отжиг для снятия остаточных напряжений.

2. ОТЖИГ II РОДА (ФАЗОВАЯ ПЕРЕКРИСТАЛЛИЗАЦИЯ) Отжиг II рода заключается в нагреве стали до темпера­тур выше точек Ас1 или Ac3, выдержке и, как правило, последую­щем медленном охлаждении. В процессе нагрева и охлаждения в этом случае протекают фазовые превращения (γ - а-превращение), определяющие структуру и свойства стали. Понижая прочность и твер­дость, отжиг облегчает обработку, резание средне- и высокоугле­родистой стали. Измельчая зерно снимая внутренние напряжения Различают следующие виды отжига: полный, изотермиче­ский и неполный.

3. ЗАКАЛКА Закалка — термическая обработка — заключается в на­греве стали до температуры выше критической (А3 для доэвтектоидной и а1—для заэвтектоидной сталей) или температуры рас­творения избыточных фаз, в выдержке и последующем охлажде­нии со скоростью, превышающей критическую. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после за­калки обязательно подвергают отпуску. Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь — для повышения прочности, твер­дости, получения достаточно высокой пластичности и вязко­сти, а для ряда деталей также высокой износостойкости. Бывает Непрерывная, Прерывистая, Закалка с самоотпуском, Ступенчатая закалка, Изотермическая, обработка стали холодом.

4. ОТПУСК Отпуск заключается в нагреве закаленной стала до температур ниже Aclt выдержке при заданной температуре и по­следующем охлаждении с определенной скоростью. Отпуск является окончательной операцией термической обработки, в результате которой сталь получает требуемые механические свойства. Кроме того, отпуск полностью или частично устраняет внутренние напря­жения, возникающие при закалке. Эти напряжения снимаются тем полнее, чем выше температура отпуска. Бывает низкотемпературный, среднетемпературный, высокотемпературный.

Отпуск сталей. Виды отпуска. Назначение. Этапы. Структура и механические свойства металлов.

отпуск является окончательной термической операцией, применяемой после закалки; это нагрев стали ниже критической точки Ас1 с последующей выдержкой и охлаждением с заданной скоростью. Различают низкотемпературный (низкий), среднетемпературный (средний) и высокотемпературный (высокий) отпуск.

Низкий отпуск

Его проводят при t>250 градусах Цельсия. Этот вид отпуска приводит к превращению мартенситной закалки в март. отпуска и практически не снижая твердости несколько увеличивает другие прочностные характеристики и отчасти ударную вязкость.

Твердость стали с содержанием углерода 0.8-1% после низкого отпуска порядка 62-64HRC. Твердость легированных сталей несколько ниже в силу сохранения в них после закалки аустенита остаточного. Низкому отпуску подвергают инструментальные стали, предназначенные для изготовления штампов, деформирующих металлы в холодном состоянии, инструмента типа: зубило, лоток, режущий инструмент, работающих при низких скоростях резания, а также детали подвергнутые цементации, ционированию.

Средний отпуск

Это вид отпуска применяют в случае необходимости получения сочетаний высокого предела упругости с прочностными характеристиками. Например: при обработке пружин, рессор средний отпуск проводят при температурах 350–500 градусах Цельсия. Структура после среднего отпуска - тростит отпуска.

Твердость 40–45HRC.

Высокий отпуск

Проводят при температурах 650–680 градусах Цельсия. Структура – сорбит отпуска. Этот вид отпуска применяется для получения лучшего сочетания прочностных свойств с ударной вязкостью. Термическая обработка, заключается в закалке с высоким отпуском называется улучшением.

Диффузионное насыщение сплавов металлами и неметаллами. Назначение виды, среды

Целью является насыщение поверхностных слоев стали различными элементами с целью повышения коррозионной стойкости, повышения твердости, усталостной прочности. Насыщение производят хромом. Процесс наз-ся хромированием, кремнием – сицилированием, Al – алиторованием, бором – борированием, при борировании резко повышается твердость поверх-х слоев, их износостойкость. Процесс борирования очень капризный, он требует четкого соблюдения технологии.

Возврат и рекристаллизация деформированных сплавов. Назначение, режимы

Возврат явл-ся самой низкой температурной обработкой позволяющей воздействовать на структурные состояния деформированного металла. Различают две стадии возврата: низкотемпературную (отдых) и высокотемпературную. (полигонизация). В процессе отдыха происходит перераспределение точечных дефектов. Перемещаются по кристаллу и дислокации, однако эти перемещения носят локальный хар-р. Дислокации различного знака встречаясь друг с другом взаимно аннигилируют, т.е. взаимоуничтожаются. Рез-ом этого являются некоторые снижения плотности дислокации. В процессе полигонизации происходит перемещение дислокации по кристаллу. Дислокации перемещ-ся хаотич. по объёму кристалла. Под воздействием тем-ры дислокации перемещаясь концентрир-ся в определённых участках стр-ры с образованием стенок и т.наз. полигонов. После полигонизации происходит некоторый возврат св-в к св-вам металла до деф-ции.

Рекристаллизация.

После достижения опред. тем-р происходит изменение уже на микроскопическом уровне. Под микроскопом на фоне вытянутых зёрен можно наблюдать мелкие зёрна равноосной формы. По мере увеличения длительности отжига или повышении тем-ры происходит рост мелких зёрен за счёт вытянутых деформируемых зёрен. Образование и рост новых зёрен за счёт деформированных зёрен той же фазы наз-ся первичной рекристаллизацией или рекристаллизацией обработки.

При дальнейшем увелич. тем-ры и длительности отжига происходит «поедание» одними зёрнами других зёрен. Следствием явл-ся разнозёренность стр-р. В пределе можно достичь того, что стр-ра металла будет состоять только зи очень крупных зёрен. Это так наз. собирательная рекристаллизация. Тем-ра начала рекристаллиз. не явл-ся постоянной физ. величиной как, например, тем-ра плавления металла. Тем-ра начала рекристаллиз. будет зависеть от степени предварительной деф-ции металла, длительности процесса и ряда др. факторов.

Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=aTпл , а=0,2…0,6.

Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.

От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зернаможно было получить.

Холодная и горячая деформация.

Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.

Закалка. Назначение и этапы. Структурные превращения при закалке сталей

Закалка — термическая обработка — заключается в на­греве стали до температуры выше критической (А3 для доэвтектоидной и а1—для заэвтектоидной сталей) или температуры рас­творения избыточных фаз, в выдержке и последующем охлажде­нии со скоростью, превышающей критическую. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после за­калки обязательно подвергают отпуску. Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь — для повышения прочности, твер­дости, получения достаточно высокой пластичности и вязко­сти, а для ряда деталей также высокой износостойкости. Бывает Непрерывная, Прерывистая, Закалка с самоотпуском, Ступенчатая закалка, Изотермическая, обработка стали холодом.

Температура нагрева под закалки выбирается исходя из состава стали. Нагрев осуществляется выше критических точек A1 или A3. Для доэвтектоидных сталей на 30-50 град. Выше критической точки Ac3 линия GS. После нагрева и выдержке следует охлаждение со скоростью выше критической, результатом такого охлаждения является структура мартенсита. А в сталях более 0.5% и до 0.8% помимо мартенсита в структуре сохраняется аустенит остаточный. Это вызвано тем, что положение точки конца мартенситного положения снижается в область отрицательных температур. Для доэвтектоидных сталей, нагрев под закалку выше Ac1. (PSK) – линия не проводиться. Последнее вызвано тем, что после закалки в структуре стали, будет присутствовать фирит. Фирит является наиболее мягкой структурой составляющей, что приводит к возникновению мягких пятен. Этот дефект получил название пятнистой твердости. Фирит располагается между иглами мартенсита, который образовался из аустенита. Температура нагрева для заэвтектоидной стали напротив, осуществляется на 30-50 град. Выше Ac1. Это обусловлено тем, что после закалки в структуре стали, сохраняется цементит, который является наиболее твердой структурной составляющей, дополнительно повышает прочностные св-ва. Структура заэвтектоидных сталей после закалки: мартенсит, цементит и аустенит остаточный. Причиной, по которой заэвтектоидные стали, не нагревают выше Acm(линия SE) является то, что эта линия располагается при более высоких температурах и в результате происходит рост зерна аустенита, а это в свою очередь приводит к получению после закалки крупно-игольчатого мартенсита. Крупно-игольчатый мартенсит по сравнению с мелко-игольчатым обладает пониженным значением ударной вязкости.

ВРЕМЯ НАГРЕВА ПОДЗАКАЛКИ

Нагрев деталей приводят в печах, в печах-ваннах индукционным нагревом, пламенем ацетиленокислородной горелки. В качестве нагревающей среды в печах-ваннах используют соли, смесь солей (BaCl2 и NaCl). Ванны применяют для нагрева до температур 1400-1450град. Общее время нагрева складывается из времени нагрева до заданной температуры и времени требуемой для прогрева детали. При нагреве в печах (камерных) вследствие контакта с окислительной средой (воздух) происходит обезуглероживание поверхностного слоя или окисление поверхностной детали. С целью предотвращения появления этих дефектов, нагрев проводят в кипящем слое, который представляет собой частицы …,через который пропускают горячий воздух. В кипящий слой помещают обрабатываемые детали.

СКОРОСТЬ ОХЛАЖДЕНИЯ ПРИ ЗАКАЛКЕ

Охлаждать при закалке следует с не одной скоростью. Важно чтобы в 1-й момент охлаждения скорость была замедлена, замедлена и в последующий момент. Особенно при протекании мартенситного превращения. Такая не равномерная скорость охлаждения выбирается из тех соображений, что С образные кривые имеют максимум в районе температур 500-560град. Поэтому аустенит, переохлажденный в районе этих температур имеет минимальную устойчивость. Выше и ниже перегиба С образных кривых аустенит более устойчив и скорость охлаждения должна быть меньше. При температуре мартенситного превращения замедленное охлаждение нужно, для того чтобы снизить напряжение, которое вызывается структурными превращениями. В качестве закалочных средств используют воду, водные растворы, масло. В воде подвергают закалке углеродные стали. В масле – легированные. Некоторые легированные стали, закаливают на спокойном воздухе. Выбор типа охлаждения среды зависит от критической скорости закалки конкретной стали. Чем ниже скорость закалки, тем выбирают охладитель менее интенсивно охлаждающий. При погружении нагретой детали, охлаждающую среду выделяют 3 участка или стадии охлаждения, отличающихся интенсивностью охлаждения.

1-я стадия – возникает в момент погружения детали. Вокруг детали паровая рубашка. На этой стадии интенсивность не велика.

2-я стадия – происходит разрушение паровой рубашки, и контакт детали с окружающей средой на поверхности детали охлаждающаяся среда кипит. Второй период получил название пузырчатого кипения. Это наиболее интенсивно охлажденная сталь.

3-я – температура детали становится соизмеримой с температурой охлаждающей среды. Начинается охлаждение детали за счет конвективного теплообмена. Скорость на этой стадии минимальна. Вода является наиболее охлаждающей средой, но воде присущ ряд недостатков:

1.Слишком быстрое охлаждение детали, в области температур мартенситного превращения и за счет этого может возникнуть термическое …….короблению металлов и трещинообразованию.

2.Вода имеет узкий интервал в стадии пузырчатого кипения. В стадии, на которой происходит наиболее интенсивное охлаждение.

3.Охлаждающаяся способность воды резко уменьшается с повышением ее температуры.

С целью расширения интервала пузырчатого кипения в воду добавляют различные соли или кислоты. Масло по сравнению с водой имеет низкую скорость охлаждения, поэтому его используют при закалке легированных сталей. Однако масло имеет существенный недостаток - –низкую температуру воспламенения.

ЗАКАЛИВАЕМОСТЬ И ПРОКАЛИВАЕМОСТЬ

Под закаливаемостью понимают способность стали к повышению твердости

Под прокаливанием понимают способность стали закаливаться на определенную глубину.

Глубина закаленной зоны является критерием прокаливаем ости. Обычно детали имеют более высокую твердость на поверхности и меньшую в сердцевине. Это объясняется теплопроводностью стали. Однако большинство деталей должны прокаливаться насквозь. Для обеспечения сквозной прокалки и контроля на ней был введен термин – критический диаметр. Под которым понимают максимальную размерность сечения детали, которая прокаливается насквозь. Для этого, чтобы закалить деталь насквозь в данном охладителе, необходимо чтобы критический диаметр Dкр больше диаметра сечения детали.

В зависимости от состава стали, формы и детали выбирают способ закалки. К основным способам закалки относятся: закалка в одном охладителе, прерывистая закалка, изотермическая закалка и различные сочетания этих способов.

Закалка в одном охладителе - это наиболее распространенный способ закалки, заключается в нагреве стали выше температур, соответствующих критической точке Ac1 и Ac3 с последующей выдержкой и охлаждением со скоростью выше критической в одном охладителе (1). В качестве охлаждающей среды для углеродистых и низколегированных сталей служит вода, легированных - масло. Некоторые высоколегированные стали закаливают на спокойном воздухе. Немаловажное значение имеет и площадь сечения детали; так углеродистые и низколегированные стали с сечением 5 мм закаливают в воде. Детали переменного сечения или сечения менее 5 мм можно закаливать и в масле, поскольку охлаждающей способности масла достаточно, для того чтобы прокалить детали тонкого сечения насквозь. В ряде случаев для снижения структурных напряжений, обусловленных фазовым наклепом, проводят закалку с подстуживанием; для этого нагретую выше соответствующей температуры деталь после выдержки подстуживают, т.е. некоторое время охлаждают на спокойном воздухе, а при подходе к температурам минимальной устойчивости аустенита (500- 550) переносят в закалочную среду тем самым снижается уровень напряжений детали при полном превращении аустенита в мартенсит. Однако осуществления закалки с подстуживанием требует большого практического опыта.

Закалка в двух средах - этот способ является некоторой разновидностью способа закалки с подстуживанием и заключается в том, что нагретую до необходимой температуры деталь, выдержанную при этой температуре, переносят в охладитель, обеспечивающий такую скорость охлаждения, которая предотвратила бы распад переохлажденного аустенита в области температур минимальной устойчивости аустенита, например в воду, а затем переносят в менее интенсивно охлаждающую среду, в которой собственно и происходит закалка(2). Такой способ закалки позволяет снизить уровень закалочных напряжений и предотвратить появление таких закалочных дефектов как, например корабление.

Струйчатая закалка - этот способ применяется в том случае, когда нет необходимости закаливать деталь на одинаковую твердость по всей поверхности. Для таких типов деталей, как зубило важно получить высокую твердость рубящей кромки при сохранении вязкого хвостовика; в этом случае инструмент, нагретый до заданной температуры, охлаждают с рабочей поверхности струями воды, тем самым разрушается "паровая рубашка" и рабочая поверхность инструмента интенсивно охлаждается.

Закалка самоотпуском - этот способ практически несет то же функциональное назначение, что и струйчатая закалка, например зубило, нагревают до заданной температуры и переносят в охлаждающую среду только рабочую часть, затем после извлечения из закалочной среды проводят выдержку на свободном воздухе в результате которой рабочая часть отпускается за счет нагрева от нерабочей, неохлажденной части. Температуру отпуска охлажденной части контролируют визуально по цветам побежалости. Закалку с самоотпуском можно проводить и другим методом, для этого деталь (инструмент) полностью подвергают закалке, а затем нагревают только нерабочую часть и за счет теплопроводности отпускается рабочая часть.

Ступенчатая закалка - этот способ является разновидностью способа закалки в двух средах(2). Однако является более эффективной с точки зрения обработки детали деталь переменного сечения. При охлаждении до температуры несколько выше точки начала мартенситного превращения необходимо выровнять температуру по всем сечениям, для этого делают выдержку в первом охладителе до выравнивания температуры, а затем переносят деталь во вторую охлажденную среду, в которой и происходит закалка(3).

Изотермическая закалка - в отличие от ступенчатой при изотермической закалке деталь помещают в охлаждающую среду с температурой несколько выше температуры начала мартенситного превращения и выдерживают в этой среде до полного завершения превращения (4). В результате изотермической закалки образуется структура - бейнит, которая по сравнению с мартенситом имеет несколько более низкую твердость и повышенную вязкость.

Закалка с обработкой холодом - после закалки в высокоуглеродистых и особенно легированных сталей в структуре сохраняется аустенит остаточный, количество которого может достигать 40%. Присутствие Aост объясняется тем, что в указанных сталях положение точек конца мартенситного превращения переходит в область отрицательных температур и охлаждающей способности закалочных сред недостаточно, чтобы достигнуть температуру Мк, поэтому детали, изготавливаемые из этих сталей при необходимости, подвергают обработке холодом, размещая их в деталях в холодильные камеры, температура в которых не ниже (-70), температура обусловлена тем, что положение точек конца мартенситного превращения ни в одной стали ниже(-70)не находится. Обработка холодом, по сути, является продолжением закалки и особенно обработка необходима для прецизионных деталей(точечных деталей). Сохранение аустенита остаточного в сталях при эксплуатации детали подобного типа может привести к превращению аустенита остаточного в мартенсит и тем самым изменению размерной точности деталей, например подшипники качения, шарики, ролики являются прецизионными деталями в подшипниках качения. Изменение объема шарика в процессе эксплуатации за счет фазового превращения может привести к заклинированию, т.о. обработка холодом применяется в качестве обработки, обеспечивающей стабилизацию размеров детали. Помимо этого обработка холодом за счет превращения остаточного аустенита в мартенсит обеспечивает и повышение специальных свойств детали, например теплостойкости (быстрорежущие стали), магнитных свойств (постоянные магниты).

Классификация конструкционных легированных сталей по характеристикам. Область применения

Классификация по составу

По составу легированные стали классифицируются в соответсвии с названием основных легирующих элементов(например хромо–никелевых, хромо–никель вольфрам и…,)

4. Классификация по названию:

а)Конструкционные стали, которые до потребителя подвергаются термической обработки. В связи с этим их подразделяют на цементуемые(подвергаемые цементированию и улучшению, подвергаемые закалке и высокому отпуску).

Несколько в стороне, но тоже относятся к конструкционным, которые у потребл. тело не подвергаются термообработке.

б)Инструментальные стали–стали предназначенные для изготовления режущего инструмента(углеродистые, легированные, быстро–режущие, штамповые).

в)стали и сплавы с особыми свойствами–это материалы с каким–либо ярко выраженным свойством(например: жаростойкие, коррозиционно стойкие, магнитные, электротехнические м т.д.).

Наши рекомендации