Релятивистские силы и магнетизм
1. Вполне обоснованное изложение релятивисткой кинематики отработано на сегодня во множестве учебников с разной степенью сложности. Не так обстоит дело с динамикой и, тем более, с электродинамикой. Для строгого изложения в теоретической физике в теоретической физике вместо ньютоновской механики используется аналитическая механика Лагранжа и Гамильтона, основу которой составляет принцип наименьшего действия. Именно с этих позиций строится четырехмерный вариант теории относительности, более соответствующий ее физической сути, чем представление о раздельном пространстве и времени. Для ознакомления рекомендуем, например, "Курс теоретической физики" Л.Д.Ландау, т.1, Механика.
На ранних стадиях изучения физики такое изложение, конечно, невозможно и тогда приходится допускать некоторое постулирование, которое, впрочем, обычно не вызывает возражения. Например, зная о сущности релятивистских преобразований (Лоренца), удобно начинать с выражений для релятивистского импульса и энергии, вводя их, как и (здесь – то же, что , в любой системе отсчета). При этом уравнение движения частицы может быть записано так:
.
Это релятивистское уравнение вполне применимо для решения задач механики, однако для выявления особенностей теории близкодействия его удобно преобразовать, приведя его к виду классического уравнения движения, где в левой части записывается произведение массы на ускорение.
Используя связь энергии и импульса , вместе с выражением для мощности силы , можно преобразовать левую часть, которая сейчас содержит сложную производную:
.
Теперь уравнение движения приобретает классический вид, удобный для решения прикладных задач:
.
Видно, что в условиях близкодействия эффективная сила взаимодействия (в правой части уравнения) претерпевает изменения по сравнению с классическим случаем, когда ее действие распространяется мгновенно во всем пространстве. Отсюда следует известный вывод о неколлинеарности силы и ускорения в общем случае. Для приложений можно провести анализ частных случаев. Так, для малых скоростей, при ( ) получаем и . При умеренных релятивистских скоростях , получаем и . При получаем, аналогично, , но .
Отсюда, в частности, при получаем .
Заметим, что второе слагаемое в выражении для эффективной силы пропорционально квадрату скорости, и, подобно вязкому трению, обеспечивает предельное стационарное значение скорости тела, равное . Так, при ( ) взаимодействие прекращается и . Из последнего, собственно, следует, что в теории дальнодействия скорость является предельной скоростью осуществления любого взаимодействия.
Таким образом, в теории относительности сила не является инвариантной величиной. Поперечная (относительно направления движения инерциальной системы координат) сила преобразуется по формуле .
Для самой простой ситуации взаимодействия двух зарядов, параллельно движущихся со скоростью V относительно неподвижного наблюдателя – все записи скалярные. В этом случае и тогда после преобразований нетрудно получить:
.
Первое выражение есть электрическая составляющая, а второе – магнитная.
Теперь, для величины силы можно записать (пренебрегая малыми величинами в знаменателе): .
Здесь – индукция магнитного поля второго заряда.