Отражение и преломление при наклонном падении
Рассмотрим случай наклонного падения плоской звуковой волны на границу раздела двух сред. Пусть угол падения равен φ1, угол отражения угол преломления φ2 (рисунок 5.2).
Граничные условия в этом случае имеют тот же смысл, что и при нормальном падении: должны быть равны между собой нормальные к границе составляющие скорости и давления в первой и второй среде.
Кроме того, должен выполняться закон Снеллиуса:
или, так как k = ω/c,
(5.25)
Этот закон универсален для всех типов плоских волн, падающих на плоские однородные препятствия. Физический смысл этого требования состоит в том, чтобы следы волн на поверхности раздела двух сред не обгоняли друг друга.
Следствием закона Снеллиуса являются законы отражения и преломления звука:
(5.26)
(5.27)
Величина n называется относительным показателем преломления звука.
Коэффициенты отражения и прохождения звуковой волны (по давлению) при наклонном падении имеют вид:
(5.28)
(5.29)
Если учесть формулу (5.27) и ввести обозначение то формулу (5.28) можно представить в виде:
(5.30)
Проанализируем выражение (5.30). При нормальном падении (φ1 = 0) это выражение совпадает с формулой (5.11). При скользящем падении (φ1→ 900) коэффициент отражения r → -1. При = 0 имеет место полное прохождение звуковой волны через границу (r = 0). Угол падения, при котором коэффициент отражения обращается в нуль, называется углом Брюстера:
(5.31)
Для того, чтобы угол Брюстера был действительным, необходимо, чтобы выполнялось условие:
(5.32)
что, в свою очередь, реализуется либо при либо при
Если скорость звука в первой и второй среде одинакова (n = 1), то коэффициент отражения не зависит от угла падения:
. (5.33)
Если скорость звука во второй среде гораздо меньше, чем в первой (c2 << c1), то и, следовательно, φ2 ≈ 0. Это означает, что независимо от угла падения звуковой волны на границу раздела, во второй среде волны распространяются только в направлении нормали к границе. Такой случай реализуется, например, при падении звуковой волны из воздуха на поверхность пористого звукопоглощающего материала. В этом случае коэффициент отражения при наклонном падении равен:
(5.34)
где R = ρ2с2 – волновое сопротивление материала, R1 = R/ρ0c - волновое сопротивление, выраженное в долях волнового сопротивления воздуха, или безразмерное волновое сопротивление (импеданс) материала.
Если импеданс границы, на которую падает звуковая волна из воздуха, комплексный ( ), то коэффициент отражения также является комплексным числом:
(5.35)
Коэффициент звукопоглощения при наклонном падении:
(5.36)
Примерный вид угловой зависимости α представлен на рисунке 5.3.
Кривая а соответствует R1→ 1, Y1 → 0, кривая б – другим значениям импеданса поверхности.