В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки)

Термодинамическая температурная шкалаопределяется по одной реперной точке, в качестве которой взята тройная точка воды(температура, при которой лед, вода и насыщенный пар при давле­нии 609 Па находятся в термодинамиче­ском равновесии). Температура этой точки по термодинамической шкале равна 273,16 К, (точно). Градус Цельсия равен Кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамиче­ская температура и температура по Меж­дународной практической шкале связаны соотношением T=273,15+t. Температура T=0 называется нулем кельвин.Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v — это объем едини­цы массы. Когда тело однородно, т. е. его плотность r=const, то v= V/m= 1/r. Так как при постоянной массе удельный объем пропорционален общему объему, то мак­роскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термоди­намической системе, связанное с измене­нием хотя бы одного из ее термодинамиче­ских параметров, называется термодина­мическим процессом.Макроскопическая система находится в термодинамическом равновесии,если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой систе­мы при этом не изменяются).

Молекулярно-кинетическая теория идеальных газов

§ 41. Опытные законы идеального газа

В молекулярно-кинетической теории поль­зуются идеализированной моделью идеаль­ного газа,согласно которой:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутству­ют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно ис­пользовать при изучении реальных газов, так как они в условиях, близких к нор-

мальным (например, кислород и гелий), а также при низких давлениях и высоких температурах близки по своим свойствам к идеальному газу. Кроме того, внеся по­правки, учитывающие собственный объем молекул газа и действующие молекуляр­ные силы, можно перейти к теории реаль­ных газов.

Опытным путем, еще до появления молекулярно-кинетической теории, был уста­новлен целый ряд законов, описывающих поведение идеальных газов, которые мы и рассмотрим.

Закон Бойля — Мариотта: для дан­ной массы газа при постоянной температу­ре произведение давления газа на его объем есть величина постоянная:

pV = const (41.1) при Т=const, m=const.

Кривая, изображающая зависимость меж­ду величинами р и V, характеризующими свойства вещества при постоянной темпе­ратуре, называется изотермой.Изотермы представляют собой гиперболы, располо­женные на графике тем выше, чем выше температура, при которой происходит про­цесс (рис. 60).

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

Закон Гей-Люссака:1) объем дан­ной массы газа при постоянном давлении изменяется линейно с температурой:

V=V0(1+at) (41.2) при p = const, m = const;

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

2) давление данной массы газа при по­стоянном объеме изменяется линейно с температурой:

p = p0(1+at) (41.3) при V=const, m=const.

В этих уравнениях t — температура по шкале Цельсия, р0и V0 — давление и объем при 0°С, коэффициент a=1/273,15 К-1.

Процесс,протекающий при постоян­ном давлении, называется изобарным.На диаграмме в координатах V, t (рис.61) этот процесс изображается прямой, на­зываемой изобарой. Процесс,протекаю­щий при постоянном объеме, называется изохорным.На диаграмме в координатах р, t (рис. 62) он изображается прямой, называемой изохорой.

Из (41.2) и (41.3) следует, что изо­бары и изохоры пересекают ось темпера­тур в точке t =-1/a=-273,15 °С, опре­деляемой из условия 1+at=0. Если сместить начало отсчета в эту точку, то происходит переход к шкале Кельвина (рис. 62), откуда

T=t+1/a.

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

Вводя в формулы (41.2) и (41.3) термодинамическую температуру, законам Гей-Люссака можно придать более удоб­ный вид:

V=V0(1+at)=V0[1+a(T-1/a)]=v0at,

p=p0(1+at)=p0 [1+a(Т-1/a)]=р0aТ, или

V1/V2 = T1/T2 (41.4)

при p = const, m = const,

р12 = T1/T2 (41.5) при V=const, m=const,

где индексы 1 и 2 относятся к произволь­ным состояниям, лежащим на одной изо­баре или изохоре.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нор­мальных условиях этот объем равен 22,41•10-3м3/моль.

По определению, в одном моле различ­ных веществ содержится одно и то же число молекул, называемое постоянной Авогадро:

nа = 6,022•1023 моль-1.

Закон Дальтона:давление смеси идеальных газов равно сумме парциаль­ных давлений входящих в нее газов, т. е.

p=p1+p2+... + pn,

где p1,p2, ..., pn—парциальные давле­ния— давления, которые оказывали бы газы смеси, если бы они одни занимали объем, равный объему смеси при той же температуре.

Уравнение Клапейрона — Менделеева

Как уже указывалось, состояние некото­рой массы газа определяется тремя тер­модинамическими параметрами: давлением р, объемом V и температурой Т.

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

Между этими параметрами существует определенная связь, называемая уравне­нием состояния,которое в общем виде дается выражением

f(р, V, Т)=0,

где каждая из переменных является фун­кцией двух других.

Французский физик и инженер Б. Кла­пейрон (1799—1864) вывел уравнение со­стояния идеального газа, объединив за­коны Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление р1и находится при температуре Т1. Эта же масса газа в другом произвольном состоянии харак­теризуется параметрами р2, V2, Т2 (рис.63). Переход из состояния 1 в со­стояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1—1'), 2) изохорного (изохора 1'—2).

В соответствии с законами Бойля — Мариотта (41.1) и Гей-Люссака (41.5) запишем:

p1V1=p'1V2, (42.1)

p'1/p'2=T1/T2 . (42.2)

Исключив из уравнений (42.1) и (42.2) р'1, получим

p1V1/T1=p2V22 .

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа

величина pV/T остается постоянной,

т. е.

pV/T =B=const. (42.3)

Выражение (42.3) является уравнением Клапейрона,в котором В — газовая по­стоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Кла­пейрона с законом Авогадро, отнеся урав­нение (42.3) к одному молю, использовав молярный объем Vт. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой посто­янной.Уравнению

pVm = RT (42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеально­го газа,называемым также уравнением Клапейрона — Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях (р0=1,013•105 Па, T0=273,15 K:, Vm= 22,41•10-3м3/моль): R = 8,31 Дж/(моль•К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейро­на — Менделеева для произвольной массы газа. Если при некоторых заданных давле­ний и температуре один моль газа занимает молярный объем l/m, то при тех же условиях масса т газа займет объем V = (m/M) Vm, где М — молярная масса(масса одного моля вещества). Единица молярной мас­сы — килограмм на моль (кг/моль). Урав­нение Клапейрона — Менделеева для мас­сы т газа

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

где v = m/M — количество вещества.

Часто пользуются несколько иной фор­мой уравнения состояния идеального газа, вводя постоянную Больцмана:

k=R/NА=1,38•10-23 Дж/К.

Исходя из этого уравнение состояния (42.4) запишем в виде

p = RT/Vm = kNAT/Vm = nkT,

где NA/Vm = n—концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

p = nkT (42.6)

следует, что давление идеального газа при данной температуре прямо пропорцио­нально концентрации его молекул (или плотности газа). При одинаковых темпе­ратуре и давлении все газы содержат в единице объема одинаковое число моле­кул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта:

NL = P0/(kT0) = 2,68•1025 м-3.

Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис. 64) и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m0v-(-m0v)=2m0v, где т0— масса молекулы, v — ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой vDt (рис.64). Число этих молекул равно nDSvDt (n—концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1/3 моле­кул, причем половина молекул (1/6) дви­жется вдоль данного направления в одну сторону, половина — в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m0v•1/6nDSvDt=1/3nm0v2DSDt.

Тогда давление газа, оказываемое им на стенку сосуда,

p=DP/(DtDS)=1/3nm0v2. (43.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v1, v2, ..., vN, то

целесообразно рассматривать среднюю квадратичную скорость

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

характеризующую всю совокупность моле­кул газа.

Уравнение (43.1) с учетом (43.2) при­мет вид

р = 1/3пт0 <vкв>2. (43.3)

Выражение (43.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов.Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

где Е — суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm0, то урав­нение (43.4) можно переписать в виде

pV=1/3m<vкв>2.

Для одного моля газа т = М (М — моляр­ная масса), поэтому

pVm=1/3M<vкв>2,

где Vm — молярный объем. С другой сто­роны, по уравнению Клапейрона — Мен­делеева, pVm=RT. Таким образом,

RT=1/3М <vкв>2, откуда

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

Так как М = m0NA, где m0—масса од­ной молекулы, а NА — постоянная Авогад­ро, то из уравнения (43.6) следует, что

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки) - student2.ru

где k = R/NA—постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода — 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

<e0) =E/N = m0 <vкв>)2/2 = 3/2kT(43.8)

(использовали формулы (43.5) и (43.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 <e0> =0,,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.

Наши рекомендации