Возрастные изменения двигательных возможностей

Совершенствование двигательных возможностей в процессе возрастного развития происходит под влиянием двух факторов: созревания и научения. Созревание — это генетически обусловленное совершенствование систем орга-низма^ Научение — результат педагогического воздействия. Взаимодействие этих факторов может носить различный характер: нейтральный, синергический (однонаправленный) или антагонистический (противоположный). Причем при синергическом взаимодействии суммарный эффект больше, чем сумма эффектов от каждого фактора.

У детей, воспитывающихся в обычных условиях, существует определенная последовательность овладения основными двигательными действиями. При исследовании близнецов установлено, что ребенок, находящийся в обществе других людей, обучается брать в руку игрушку, сидеть, стоять и ходить в определенные сроки независимо от того, видах спорта:

/ — фигурное катание, плавание, гимнастика; 2 — спортивные игры, бокс, горные лыжи; 3 — гребля, конькобежный спорт, хоккей; 4 — водное поло, борьба, легкая атлетика; 5 — лыжные гонки, фехтование, биатлон, пятиборье; 6 — парусный, стрелковый, конный спорт (сплошной линией показаны средние значения возраста спортсменов, пунктир — минимальные и максимальные величины) (по Л. Б. Гороховскому) результате чего занятия физкультурой принесут не пользу, а вред растущему организму.

В каждом виде двигательной деятельности есть возрастной диапазон, в котором достигаются самые высокие спортивные результаты. В подавляющем большинстве случаев границы этого диапазона простираются от 16 до 30 лет — это возраст расцвета двигательных возможностей человека. В разных видах спорта собраны данные о возрасте, в котором большая часть спортсменов достигает выдающихся успехов (рис. 63). Совершенно очевидно, что средний возраст победителей крупнейших международных соревнований тесно связан с периодом достижения наивысшего уровня ведущего в данном виде спорта двигательного качества. Например, во многих циклических видах спорта важнейшим качеством является выносливость, достигающая наибольших величин в зрелом возрасте. В этой связи в легкой атлетике, например, наблюдается тенденция увеличения среднего возраста чемпионов с удлинением дистанции: с 22 лет в беге на 100 м до 26 лет на дистанции 1500 м и до 31 года в марафоне.

Двигательные возможности человека интенсивно развиваются в юности и постепенно затухают в зрелом возрасте. До известной степени это компенсируется тренировкой и опытом (рис. 64), особенно в видах двигательной деятельности со сложной техникой и тактикой. Например, всемирно известный советский вратарь Лев Яшин даже в 40-летнем возрасте демонстрировал отменное технико-тактическое мастерство и играл не только в составе сборной СССР, но и за сборную мира.

31. Характеристика скоростных способностей

Биомеханическая характеристика силовых качеств

Сила действия человека

В биомеханике силой действия человека называется сила воздействия его на внешнее физическое окружение, передаваемая через рабочие точки своего тела. Примером могут быть сила давления на опору, сила тяги за рукоятку станового динамометра и т. п.

Сила — это мера механического действия одного тела на другое Численно она определяется произведением массы тела на его ускорение, вызванное данной силой:

Момент силы — это мера вращающего действия силы на тело; от определяется произведением модуля силы на ее плечо

Сила действия человека (СДЧ), как и всякая другая сила, может быть представлена в виде вектора и определена указанием: 1) направления, 2) величины (скалярной) и 3) точки приложения (рис. 44).

Сила действия человека зависит от состояния данного человека и его волевых усилий, т. е. стремления проявить ту или иную величину силы, в частности максимальную силу, а также от внешних условий, в частности от параметров двигательных заданий.

Понятие о силовых качествах

Силовые качества характеризуются максимальными величинами силы действия ( F mm ), которую может проявить тот или иной человек. Вместо термина «силовые качества» используют также термины

«мышечная сила», «силовые возможности», «силовые способности». Наиболее распространенной является следующая классификация силовых качеств:

Силовые качества Условия проявления

1. Собственно-силовые Статический режим и медленные (статическая сила) движения

2. Скоростно-силовые:

а) динамическая сила Быстрые движения

б) амортизационная сила Уступающие движения

Сила действия человека и сила мышц

Сила действия человека непосредственно зависит от сил тяги мышц, т. е. сил, с которыми отдельные мышцы тянут за костные рычаги. Однако между натяжением той или иной мышцы и силой действия нет однозначного соответствия. Это объясняется, во-первых, тем, что почти любое движение происходит в результате сокращения большого числа мышечных групп; сила действия — итог их совместной активности; и, во-вторых, тем, что при изменении суставных углов меняются условия тяги мышц за кость, в частности плечи сил мышечной тяги

. Зависимость силы действия от параметров двигательных заданий

Рассмотрим зависимость силы действия от таких характеристик двигательных заданий, как: а) скорость движущегося звена тела, б) направление движения.

Связь «сила действия — скорость». Если толкать ядра различного веса, измеряя скорость вылета ядра и проявленную силу действия, то сила и скорость будут находиться в обратно пропорциональной зависимости: чем выше скорость, тем меньше проявленная сила, и наоборот. В крайнем случае, когда ядро будет

настолько тяжелым, что его уже нельзя сдвинуть с места, можно проявить наибольшую силу действия (статическое усилие, скорость равна нулю). Наоборот, при движении свободной руки (масса «ядра», а следовательно, и сила действия, приложенная к нему, равны нулю) скорость будет наибольшей. При толкании обычного ядра скорость и сила имеют какие-то средние величины.

Когда зависимость «сила — скорость» изучается в лабораторных условиях на изолированных мышцах, получаются весьма точные зависимости, характеризуемые уравнением Хилла (см. 14.3). «Кривая Хилла» сохраняет свою форму, если в эксперименте удается зарегистрировать силу и скорость сокращения отдельной мышцы у человека (это пока можно сделать только на больных после определенных ортопедических операций).

При регистрации же силы действия, обусловленной совокупной активностью многих мышц, картина несколько сложнее. Так, в односуставных движениях зависимость, как правило, полностью сохраняется. В многосуставных движениях «на краях» зависимости (т. е. в зонах очень больших сил или очень больших скоростей) характер зависимости подчас меняется. Например, при метании с места ядер разного веса оказывается, что ядро весом 150 г спортсмены высокой квалификации метают дальше (т. е. выбрасывают его с большей скоростью), чем более легкое ядро (шарик) — весом 80 г (рис. 45). Наиболее вероятная причина этого — стремление предохранить руку от травмы. Однако в принципе, в общих чертах обнаруженная на отдельных мышцах зависимость между силой и скоростью сокращения проявляется и в сложнокоординированных движениях человека.

Связь «сила действия — направление движения». Сила действия в уступающих движениях может значительно (до 50—100%) превосходить максимальную изометрическую силу человека.

Например, сила действия, проявляемая при приземлении с большой высоты, больше той, которую спортсмен может проявить в отталкивании. Очень часто максимальные величины силы действия проявляются именно в уступающих фазах движения. Сила действия в уступающем режиме зависит от скорости. Чем быстрее происходит растягивание активных мышц, тем большую силу они проявляют (рис.

36) Приятие о скоростных качествах

Скоростные качества характеризуются способностью человека совершать двигательные действия в минимальный для данных условий отрезок времени. При этом предполагается, что выполнение задания длится небольшое время и утомление не возникает.

Принято выделять три основные (элементарные) разновидности проявления скоростных качеств:

1) скорость одиночного движения (при малом внешнем сопротивлении);

2) частоту движений;

3) латентное время реакции.

Между показателями скорости одиночного движения, частоты движений и латентного времени реакции у разных людей корреляция очень мала. Например, можно отличаться очень быстрой реакцией и быть относительно медленным в движениях и наоборот. Имея это в виду, говорят, что элементарные разновидности скоростных качеств относительно независимы друг от друга.

В практике приходится обычно встречаться с комплексным проявлением скоростных качеств. Так, в спринтерском беге результат зависит от времени реакции на старте, скорости отдельных движений (отталкивания, сведения бедер в безопорной фазе) и частоты шагов. Скорость, достигаемая в целостном сложнокоординированном движении, зависит не только от скоростных качеств спортсмена, но и от других причин (например, скорость бега — от длины шагов, а та, в свою очередь, от длины ног, силы и техники отталкивания), поэтому она лишь косвенно характеризует скоростные качества, и при детальном анализе именно элементарные формы проявления скоростных качеств оказываются наиболее показательными.

В движениях циклического характера скорость передвижения непосредственно определяется частотой движений и расстоянием, проходимым за один цикл (длиной «шага»):

v=f*l

f=частота l- длина шага

С ростом спортивной квалификации (а следовательно, и с увеличением максимальной скорости передвижения) оба компонента, определяющие скорость передвижения, как правило, возрастают. Однако в разных видах спорта по-разному. Например, в беге на коньках основное значение имеет увеличение длины «шага», а в плавании — примерно в равной степени оба компонента. При одной и той же максимальной скорости передвижения у разных спортсменов могут быть значительные различия в длине и частоте шагов.

2. Динамика скорости

Динамикой скорости называется изменение скорости движущегося тела, то есть функция вида: v =f ( t ) либо v = f ( l ), где v — скорость, t — время, l — путь, f —знак функциональной зависимости.

В спорте существуют два вида заданий, требующих проявления максимальной скорости. В первом случае необходимо показать максимальную мгновенную скорость (в прыжках — к моменту отталкивания; в метании — при выпуске снаряда и т. п.); динамику скорости при этом выбирает сам спортсмен (например, он может начать движение чуть быстрее или медленнее). Во втором случае необходимо выполнить с максимальной скоростью (в минимальное время) все движение (пример: спринтерский бег). Здесь тоже результат зависит от динамики скорости. Например, в спринтерском беге наилучший результат достигается в тех попытках, где мгновенные скорости на отдельных отрезках стартового разгона являются максимальными для данного человека.

Во многих движениях, выполняемых с максимальными скоростями, различают две фазы: 1) увеличения скорости (стартового разгона), 2) относительной стабилизации скорости (рис. 49). Характеристикой первой фазы является стартовое ускорение, второй — дистанционная скорость. Так, кривая скорости в спринтерском беге может быть описана уравнением

v(t)=vm(1-e-kt)

где v ( t ) — значение скорости в момент времени t , v — максимальное значение скорости; е—основание натуральных логарифмов; к—индивидуальный параметр, характеризующий ускорение при разгоне со старта. Чем больше величина к, тем быстрее достигает спортсмен своей максимальной скорости. Значения v m и к не коррелируют между собой. Иными словами, способность быстро набирать «свою» максимальную скорость и способность передвигаться с большой скоростью относительно независимы друг от друга. Действительно, сильнейшие спринтеры достигают своей максимальной скорости в беге примерно за то же время, что и новички, — через 5—6 с с момента ухода со старта. Можно обладать хорошим стартовым ускорением и невысокой дистанционной скоростью и наоборот. В одних видах спорта главным является стартовое ускорение (баскетбол, теннис, хоккей), в других важна лишь дистанционная скорость (прыжки в длину), в третьих существенно и то и другое (спринтерский бег).

3. Скорость изменения силы (градиент силы)

Слово «скорость» употребляется для обозначения не только быстроты изменения положения тела или его частей в пространстве, но и быстроты изменения других показателей (например, можно говорить о скорости -изменения температуры). Сила действия, которую проявляет человек в одной попытке, непрерывно изменяется. Это вызывает необходимость изучения скорости изменения силы — градиента силы. Градиент силы особенно важен при изучении движений, где необходимо проявлять большую силу в возможно короткое время — «взрывом». Математически градиент силы равен первой производной от силы

по времени:

Кривая нарастания силы при однократном «взрывном» усилии с последующим немедленным расслаблением имеет вид, показанный на рис. 50. Для численной характеристики градиента силы используют обычно один из следующих показателей:

1) время достижения силы, равной половине максимальной.

Нередко именно этот показатель называют градиентом силы (такое словоупотребление удобно своей краткостью, но не вполне точно);

2) частное от деления F mix / t max . Этот показатель называют скоростно-силовым индексом. Он равен тангенсу угла на рис. 50.

В тех случаях, когда речь идет о перемещении собственного тела

спортсмена (а не снаряда), удобно пользоваться так называемым коэффициентом реактивности (по Ю. В. Верхошанскому):

F max / t max * вес тела спортсмена

Скорость нарастания силы играет большую роль в быстрых движениях. Ее практическое значение легко понять из рис.51, где приведены кривые проявления силы двумя спортсменами — А и Б. У спортсмена А — большая максимальная сила и низкий градиент силы; у спортсмена Б, наоборот, градиент силы высок, а максимальные силовые возможности небольшие. При большой длительности дви-жения ( t > t 3 ) когда оба спортсмена успевают проявить свою максимальную силу, преимущество оказывается у более сильного спортсмена А. Если же время выполнения движения очень коротко (меньше t 1, на рис. 51), то преимущество будет на стороне спортсмена Б.

С ростом спортивной квалификации время выполнения движений обычно сокращается и поэтому роль градиента силы становится более значимой.

Время, необходимое для достижения максимальной силы ( t max ), составляет примерно 300—400 мс. Время проявления силы действия во многих движениях значительно меньше. Например, отталкивание в беге у сильнейших спринтеров длится менее 100 мс, отталкивание в прыжках в длину — менее 150—180 мс, отталкивание в прыжках в высоту — менее 250 мс, финальное усилие в метании копья — примерно 150 мс и т. п. Во всех этих случаях спортсмены не успевают проявить свою максимальную силу и достигаемая скорость зависит в значительной степени от градиента силы. Например, между высотой прыжка вверх с места и коэффициентом реактивности очень большая корреляция (прыгает выше тот спортсмен, кто при том же собственном весе может развить большую силу отталкивания за наименьшее время).

4. Параметрические и непараметрические зависимости между силовыми и скоростными качествами

Если спортсмен несколько раз выполняет одно и то же движение (например, толкание ядра с места), стремясь показать в каждой попытке наилучший результат, а параметры двигательного задания (в частности, вес ядра) при этом меняются, то величины силы действия, приложенной к ядру, и скорость вылета ядра будут связаны друг с другом параметрической зависимостью.

Под влиянием тренировки параметрическая зависимость «сила — скорость» может измениться по-разному. Это определяется тем, какие тренировочные средства и методы использовались спортсменом (рис. 52).

Существенно, что прирост скорости при движениях со средними сопротивлениями (а такими сопротивлениями в реальных спортивных условиях могут быть, например, вес и масса собственного тела или снаряда) может происходить при разном соотношении прироста силовых и скоростных качеств: в одних случаях (рис. 52, А) — за счет роста скоростных качеств ( v mm ) b других (рис. 52, Б) — за счет роста силовых качеств ( F mm ).

Какой путь роста скоростных показателей является в тренировке более выгодным, зависит от многих причин (возраста спортсмена, стажа занятий, вида спорта и др.), и в частности от величины сопротивления (в % от F mm ), которое приходится преодолевать спортсмену: чем оно больше, тем более важно повышение силовых качеств. Это подтверждается, в частности, величинами непараметрических зависимостей между показателями силовых качеств спортсмена ( F mm ) и скоростью выполнения движений ( v т ) при разных величинах сопротивления. Так, в одном из экспериментов (Ю. И. Смирнов) коэффициенты корреляции были равны: без отягощения—0,131, с отягощением 1 кг — 0,327, с отягощением 3 кг —0,630, с отягощением 8 кг — 0,824.

Поэтому чем больше величина преодолеваемого сопротивления, тем выгоднее в тренировке повышать скорость (р т ) за счет роста силовых показателей

32. Характеристика гибкости

Наши рекомендации