Жөндеуді жоспарлау және басқару, негізгі түсініктер мен нормативтері
Жөндеулерді жоспарлау, жөндеудің көлемін, құнын және де жөндеудің барлық түрін орындау мерзімі мен техникалық қызмет көрсетулердің мерзімділігін анықтау мақсатында орындалады. Сонымен қатар, мұнда жөндеу персоналдар тізімін, оның профессионалдық және квалификациялық құрамын және де материалды-техникалық ресурстар мұқтаждығын анықтау қарастырылады.
Жөндеулерді жоспарлау барысында жөндеулердің сапасы мен орындалу мерзімдерінің, кәсіпорынның өндірістік техника-экономикалық көрсеткіштеріне әсерін талдау мүмкіндігі пайда болады.
Жөндеулерді жоспарлау келесі құжаттарды қолдана отырып жүзеге асырылады:
· анықталағн жөндеу нормативтерін;
· ыдыстар мен аппараттарды куәландыру мен сынаудың мерзімділік нормативтері;
· кәсіпорынның негізгі қорын жөндеудің титулді тізімі;
· сметалық – техникалық құжаттар;
· жабдықтарды жоспарлы-мерзімділік жөндеудің жылдық кестесі;
· жабдықты жөндеудің ай сайынғы жоспар-кест есебі;
· жөндеулердің күнтізбектік мерзімін анықтауға (өзгертуге) жасалынған акт;
Жабдықты жөндеудің жылдық және ай сайынғы жөндеулер кестесінің түрі, оларды ЭЕМ-де есептеу мүмкіндігін қарастыруы қажет:
· жөндеуге кететін уақыт шығындарын;
· жөндеуге кететін жұмыс күшінің шығындарын;
· қосалқы бөлшектер мен жөндеу аспаптарының қажетті мөлшерін;
· жөндеуге тұрған уақытта жабдықты жаңаландырудың орындалуын.
Қазіргі таңда өнеркәсіптің әрбір саласы үшін, «Жоспарлы-сақтық жөндеулер жүйесі жайында ережелер» дайындалған. Мұнда жөндеу бойынша құжаттар мазмұны мен оларды түзу түрлері келтірілген.
Лекция 4
Жабдықтың тозуы
Тозу түрлері
Жабдықтың сеніді жұмысының төмендеуі, оның жұмысының негізгі көрсеткіштерінің нашарлауы физикалық моральді тозуымен түсіндіреді.
Физикалық тозуы ретінде түйіндер мен бөлшектердің пішінінің, өлшемдерінің, физико-механикалық қасиеттерінің өзгеруін түсінуге болады, және де бұл өзгерістерді органолептикалық әдістермен не болмаса өлшеулердің көмегімен анықтауға болады.
Жабдықтың моральдық тозуы оның сыртқы көрінісі мен технико-экономикалық көрсеткіштерінің заман талабына сәйкес келмеуінен жүреді. Жабдықтың моральдық тозуын анықтаудың біркелкі критериінің болмауын айта кеткеніміз жөн, сондықтан да бұл мәселе әрбір нақты жағдай үшін жеке шешіледі.
Физикалық тозу үшін шектік – мүмкін шама орнатылады да, оның сырт көзбен бағалауға және де шамасын құралдық әдіспен анықтауға болады. Көрсетілген нормадан асып кету, апаттың болу мүмкіндігінен жабдықты онан әрі эксплуатациялаудың мақсатқа сай еестігін көрсетеді.
Механикалық тозу біршама көп таралған тозу түрі және де ол бөлшектердің сынуы (шартты күйреу), беттік желіну (қажалу), деформациялану және үгетілу мен микрокүйреу байқалады.
Сыну. Бөлшектің толық сынуы немесе ондағы жарғыншақтың пайда болу мүмкін жүктемеден асып кеткен жүктеме әсерінің нәтижесінде орын алады.
Бөлшектің сынуы және осының салдарынан жабдықтың апатқа ұшырауын алдын алу үшін шекті жүктемелердің пайда болуын алдын алу іс-шараларын қолдану қажет. Сондықтан да технологиялық және де конструктивті сипаттағы іс-шараларды қолданады. Сонымен қатар, жауапты бөлшектерді жұмысқа пайдаланудың барлық кезеңдерінде үнемі тексеріп отыруымыз қажет.
Беттік тозу. Іс жүзінде жанасқан бөлшектердің беттерінің арасында әсерлесудің болмауы мүмкі емес. Олардың бір-біріне қарасты қозғалысы барысында механикалық тозу жүреді. Механикалық тозудың сипаты мен жылдамдығы көптеген факторларға тәуелді. Ең алдымен тозу интенсивтілігіне, жанасқан беттердің материалының тозу тұрақтылығы, меншікті жүктелулері, салыстырмалы қозғалу жылдамдығы және жүктелулері, салыстырмалы қозғалу жылдамдығы және бөлшектің жанасушы беттерінің адырлығы әсерін тигізеді. Беттік тозудың негізгі төрт түрін қарастыруға болады – қажалу, молекулалы механикалық тозу, жарақаттану және шаршаушы үгетілу.
Қажалу кинетикалық жұптардағы үйкелістердің нәтижесінде болып табылады. Үйкелісудің нәтижесінде пайда болған тозу, үйкелісу сияқты физикалық және механикалық сипаттағы аса күрделі процесс. Сондықтан да, бақыланып отырған құбылысқа түрлі түсініктер беріледі. Бұл процесс барысында құбылыстың жүру сипатына түсініктеме беру үшін жиі, молекулалық-механикалық теорияны қолданады. Екі бөлшектің бір-біріне қарағандағы қозғалысы олардың жанасушы беттерінің қажалуымен жүреді. Қажалу механизмін түсіндіру үшін осы процестің жүруін түсіндіруші бірқатар физикалық модельдер қолданылады.
Ұсынылып отырған модельдерге сай, бөлшектердің тозуының жылдамдығы материалының қаттылығы мен тұтқырлығына, әсерлесу беттерге түсетін меншікті қысымға, бет адырлығына және жылжуының салыстырмалы жылдамдығына байланысты болады. Үйкелісуші беттерде өте сапалы өңделу кезінде төбешіктер мен сайлар кездеседі. Осы себепті фазалардың әсерлесуі толық беті бойынша емес (нақты), тек қана төбешіктер жотасы бойынша жүреді, мұның ауданы нақты беттен ондаған және мыңдаған есе аз болады. Осыған орай олардың бетінде қысым ондаған және жүздеген мПа-ға дамиды. Беттердің салыстырмалы қозғалысы кезінде деформацияға ұшырайды. Ал елеусіз қысым әсерінде төбешіктер тек серпінді деформацияланады. Бұл кезде төбешіктер сығу күші бірнеше рет әсер еткеннен соң шаршаушы тозу салдарынан күйрей бастайды. Бұл процестер май қабаты болған кезде де жүреді. Егер де бөлшектің бірінің қаттылығы екіншісінен жоғары болса, онда бөлшек интенсивті жүреді.
Егер де тозудың басқа түрін болмайды деп жорамалдайтын болсақ, онда үйкелісуші беттердің бір-бірімен үйренісуінің нәтижесінде тозу тоқтайды.
Әрине, іс жүзінде олай болмайды. Өйткені тозудың екінші бір механизмі дами бастайды. Егерде жанасушы беттер арасында тозудың қатты өнімдері немесе басқа да қатты түйіршіктер пайда болған кезде бөлшектің жанасушы бетінде адырлық пайда болады да жоғарыда қаралған тозу механизмі қайталанады.
Беттік тозу шамасына әсер етуші болаттың негізгі параметрлреі, бұл оның қаттылығы мен тұтқырлығы. Қаттылық пен тозу тұрақтылық арасында сызықтық байланыс бар. Қаттылығы жоғары болған сайын тозу тұрақтылық жоғары.
Тұтқырлықтың жоғарылауы тозуды төмендетеді, себебі бұл кезде беттен болат түйіршіктерінің ажырауы қиындайды.
Сонымен қатар жазғылау мен соққылау тозу тұрақтылықты үлкейтеді, себебі өңдеуден соң болаттың беттік қабаты майда дәнді структураға ие болады да тығыздалады.
Жанасатын бөлшек материалдарын таңдап қабылдау кезінде келесі ережеге сүйену қажет: біршама күрделі және жауапты бөлшекті едәуір тозуға тұрақты материалдардан дайындайды, ал едәуір қарапайым бөлшекті аз қаттылығы мен елелусіз үйкелісу коэффициенті бар материалдардан дайындайды. Есте сақтауға тиістісі, бұл білік-подшипник типті жұпты дайындау үшін қолданатын біртекті материал, әртектіге қарағанда үлкен үйкелісу коэффициентіне ие болады.
Сонымен қатар бөлшектің тозу тұрақтылығына болаттағы қоспалар үлкен әсерін тигізеді. Болатты хром, молибден және басқа да компоненттердің, корбидттердіңтүзілуінің есебінен, жоғары микроқаттылықты қамтамасыз етеді, оның тозу тұрақтылығын бірнеше есеге арттырады.
Көміртекті құрамының өсуі болаттың тозу тұрақтылығын төмендетеді, ал ондағы марганецтің болуы оның тұтқырлығы мен тозу тозу тұрақтылығын жоғарылатады. Құрамында 11-13 пайызға дейін марганец бар, марганецтің болаттарды диірмендерді, ұғатқыштарды іштей футировкалау үшін қолданады.
Күкірттің құрамының мүмкін шамадан жоғары (0,02 – 0,03 пайыз) әсер етуі қоспаның үгетілуінің салдарынан болаттың қажалымдылығын жоғарылатады.
Өздігінде хром болаттың қаттылығын жоғарылатады. Хром 0,7 % жоғары қосу қажеттігі жоқ, себебі қаттылықтың шамадан тыс өсуі болады. Сондай-ақ молибден мен вольфрам да болаттың тозу тұрақтылығын жоғарылатады.
Шойындарда тозу тұрақтылық оншалықты жоғары емес. Біршама үлкен тозу фериттік шойында, ал аз тозу перлиттік шойындарда байқалады. Шойынның тозу тұрақтылығын жоғарылату үшін келесі элементтер қосады -1 – 2 % никельді және 0,4 – 0,5 % хромды.
Бос күйде болатын графит, шойынның қаттылығын азайтады, үйкелісу коэффициентін төмендетеді, осының салдарынан жалпы алғанда бөлшектің ұзақ мерзімділігі өседі.
Адырлық едәуір аз мәнге ие болатындай бетті өңдеудің жоғары сапасы кезінде, механикалық тозудың бірқатар түрлері орын алады.
Молекулярлық-механикалық тозу.Бұл тозу түрінің механизмін қаралған механикалық теорияны қолдана отырып ашу мүмкі емес. Ғалымдардың түрлі зерттеулері көрсеткендей, үйкелісу екі жақты меолекулярлы-механикалық табиғатқа ие болады. Бұл кездегі жүретін құбылыстың маңыздылығы келесіге келіп тіреледі. Бөлшек ішіндегі және де оның бетіндегі молекулалар бірдей күйде болмайды. Ағаш, қоршаған ортамен молекулалар өзара әсерлесе отырып тепетеңгеріледі. Беттегі молекулалар, бір жағынан бөлшек ішіндегі молекулалармен өзара әсерлеседі де, соның бетінде артық энергияға ие болады және де магнит өрісін түзеді.
Бұл кездегі жанасушы бөлшектер арасындағы қалыптасқан өзара тартылу күші орасан зор мнге жетеді. Болаттың микрокөлемінің суық пісірілісу жағдайда байқалады (майлау майы болмаған кезде). Техника тілінде бұл құбылысты ілігісу деп айтады. Мұндай тозу елеусіз салыстырмалды қозғалыс жылдамдығында, майлау майының жанасу аймағында болмағанда және де жоғары меншікті қысымында жүреді.
Ілігісу құбылысы әсерлесу нүктесінде, болаттың жұмсалуы мен пісірілісуі болатындай температураның жоғарылауымен байқалады. Болаттың жұқа қабатындағы температураның жоғарылауы түрлі механикалық қасиетегі болаттардың үйкелісуінде байқалады. Егерде бір бөлшек біршама қатты материалдан жасалса.
Жарақаттану. Жанасушы бөлшектің бірінің бетінен елеулі мөлшердегі болаттың сыдырылып әкетілуімен сипатталады. Жарақаттанудың нәтижесінде бөлшектің бірінің бетінде терең оршын қалыптасады. Бұл өз кезегінде интенсивті қажалуға себеп болып қызмет етеді.
Жарақаттанудың негізгі екі себебі болуы мүмкін – үйкелісуші беттердің жергілікті берік ілігісуі және де екі бөлшектіі әсерлесу аймағына ірі образивті түйіршіктің келіп түсуі. Бірдей материалдан жасалған жанасушы бөлшектерде жиі жарқаттанудың орын алуы байқалған.
Абразивті қажалу. Үйкелісуші беттерге шаң, құм және басқа да үлкен мөлшердегі майда түйіршіктердің келіп түсуімен жүреді. Көпшілік жағдайда бұл түйіршікте майлау майымен бірге қоршаған ортадан келіп түседі не болмаса жұмысқа пайдалану барысында қалыптасады. Егерде түйіршіктердің өлшемдері елелусіз болса олардың әсері елеусіз. Кері жағдайда бөлшектердің тозу тұрақтылғы бірдей болмауынан беттердің бірінің интенсивті тозу жүреді, немесе екі бөлшекте тозуға ұшырайды. Абразивті түйіршік қысымының әсерінен біршама жұмсақ бөлшекке енеді де онда ұсталып қалады, ал бұл кезде біршама жұмсақ болат қажалады.
Абразивті қажалу, майлау майының құрамында коррозияны тудырушы зат толған жағдайда үдете түседі. Әдетте, бұл кезде интенсивті тозу жоғары температурада жүреді.
Әсерлесуші шаршау тозуы. Бұл жағдайда бөлшектің күйреу процесі южоғары, циклді өзгеретін жүктеменің әсер етуімен жүреді.
Шаршау тозуына тән белгілер, бұл елеулі қадықты деформацияның болмауы және қиылу орнында тегіс беті бар жарғыншақтың болуы. Шаршаушы күйреу мүмкін кернеуге қарағанда аз кернеуылік жағдайда жүреді. Шаршау беріктігін төмендетуші негізгі себептер: бір диаметрден екінші диаметрге өтер жерде доғалдану радиусының болмауы. Келесі бір басты себептері, бұл беттің өңделуі және де кеуек, көпіршік түріндегі структурасының ақауы.
Тоғысу шаршау тозуы үйкелісу бетіне әсер ететін жүктеменің бағыты мен шамасының өзгеруімен сипатталушы бірнеше рет кернеуцлілік жағдайға ұшырауының нәтижесінде жүреді де, нәтижесінде жеке түйіршіктері ажырай бастайды. Мұндай тозу түрін шаршаушы ұғатылу деп атайды,
Ұғатылу, майлау майының үлкен мөлшері кезінде қарқынды жүреді, себебі майлау майы қысым әсерімен үйкелісу бетіндегі алғаш пайда болған жарғыншақтарға енеді де олардың әрі қарай дамуына ықпал етеді. Мұндай құбылысты, шамасы мен бағыты бойынша айнымалы жүктелуші үйкелісуші жұптар үшін майлау жүйесін жасап дайындау кезінде ескеру қажет. Тоғысу – шаршау тозуы шестреня тістері, тербелу және сырғанау подшипниктеріне тән құбылыс.
Жаншылу деформайциясы. Үлкен меншікті жүктемелердің ұзақ мерзімді әсері барысында үйкелісу беттері бірте-бірте жаншылуға ұшырайды. Үйкелісуші беттердің өңделуінің төмен сапасы кезінде нақты тоғысу беттерінде жүретін нақты меншікті қысым күшейеді. Мүмкін шектік мәніне жеткенде адырлық жоталарының шығып тұрған бөлігі жаншылады. Бұл тозу шамасын, өңдеу сапасын жоғарылата отырып, үйкелісуші беттерді алдын ала жұмыстың үйреністіре отырып және де жүктемелердің мүмкін шегін қатаң ұстай отырып төмендетуге болады.
Машинаның конструтивтік элементтерінің тозуы механикалық, жылулық және химиялық факторлардың әсерінің нәтижесі болып табылады. Ықпал ету факторына қарай тозуды механикалық, жылулық және коррозиялық деп түрлендіреді.
Механикалық тозу – табиғи процесс, және де бөлшектің геометриялық пішіні мен өлшемінің өзгеруі, деформацияға ұшырауы, тұтастығының бұзылуы, сондай-ақ беттік қабаттағы материалдың қасиетінің өзгеруі түрінде байқалады.
Механикалық тозу келесі факторларға тәуелді:
1) үйлесуші беттер материалдарының сапалары
2) үйлесуші беттердің өңдену тазалығына
3) үйлесу жұптарындағы жағармайдың болуы мен сапасы
Аталған факторлардың ықпалы заңды және де тозу жылдамдығына елеулі әсер етеді. Сонымен қатар механикалық тозу шамасына жанасу жұптарындағы динамикалық жүктемелердің де әсері зор. Яғни бағыты айнымалы жүктемелердің әсерінен металлда шаршаушы тозуға ұшырайды.
Үйкелісуші бөлшек материалдарының сапасы, үйкелісуші жұптардың тозутүзілділігін, жұмсақ деформациялануының қарқындылығы мен сипатын, сонымен қатар үйкелісу жылуының әсеріндегі болатын шаршауы түріндегі құбылыстың орын алуын анықтайды.
Жанасушы бөлшек беттерінің бет тазалықтары да үйкелісуші бөлшектер арасындағы нақты жанасу бетін анықтайды.
Өңделу бетінің сапасы конструктивті элементтің әсерге төзімділігі мен шаршау беріктігіне де әсер етеді.
Бөлшектің жұмсақ деформациялануы кинематикалық жұптағы меншікті жүктеменің, мүмкін шамадан артып кетуінің салдары болып табылады.
Механикалық тозу түрі болып табылатын, бөлшектің тұтастылығының бұзылуы келесі бірқатар себептердің салдары болып табылады:
1) мүмкін жүктемеден артып кету;
2) ескерусіз болған кернеудердің шоғырлануы
3) металлдың механикалық көрсеткіштерінің үлкен алшақтығы
4) дайындалу сапасы – термомеханикалық, пісіру және құрастыру операцияларының сапасы
5) майлау сапасы
механикалық тозудан басқа материалдың ескіруі де орын алады. Ескіру процесі, металдағы атомдардың диффузиялық араласуы, термоөңдеу барысында алынған структураның құлдырауы, және де химиялық құрамының өзгеруі түріндегі қат-қабат жүретін күрделі процесс.
Коррозиялық тозу
Коррозия деп, жұмысшы және қоршаған ортаның химмиялық немесе электрохимиялық әсер етуінің нәтижесіндегі бөлшек металлының күйреуі.
Химия, мұнайхимия және мұнайөңдеу өнеркәсібінің кәсіпорындарындағы технологиялық жабдықтарының істен шығуының басым себебі болып табылады.
Күйретуші әсерінің сипатына қарай коррозия тұтас және жергілікті (жеке дақ, жарғыншақ, саңылау) болуы мүмкін.
Технологиялық жабдықтардың істен шығуы коррозия түріне қарай келесідегідей үлеседі:
1) коррозияның шытынау – 35 %
2) саңылаулы коррозия – 20 %
3) тұтас коррозия – 18 %
4) кристалларалық коррозия – 16 %
5) коррозияның басқа түрлері – 11 %
Сонымен басмы коррозия түрі, бұл коррозиялық шытану. Бұл бір мезгілде әсер етуші келесі екі фактордың салдары болып табылады – ортаның агрессивтілігі мен металдағы қалдық керенулілік. Коррозияның бұл түрі кенеттен, алдын ала металдық структурасы мен қасиетінің өзгеруінсіз орын алады. Әдетте бұл, пісірмелі қосылыстарда, иілген орындарда, развальцовкаланған орындарда жүреді. Яғни коррозияның бұл түрі металдың кристалдық дәндерінің өсуі орын алған орындарда жүреді.
Саңылаулы коррозия – металлда өнбойына өткен саңылаудың орын алуымен сипатталады. Коррозиялық шытынау сынды, саңылаулық корозия ең алдыменен жоғары қысымда жұмысістейтін аппараттар үшін қауіпті. Саңылаулы коррозияны дер кезінде байқау үшін жабдық қаңқасының ішкі қорғау қабатында белгі бергіш саңылаулар ойылады. Бұл саңылауда коррозия қоздырғыштарының орын алуды коррозиялық күйреудің басталғандығын білдіреді.
Коррозиялық тозу түрі болып табылатын кристаларалық коррозия кристаллдар мен дәндердің шекарасында даму алады.
Бұл тозудың қауіптілігі, сырт көрінісі бойынша металл өзгермегеніменен, оның беріктіктік қасиеті күрт төмендейді. Коррозияның бұл түріменен күресудің бірден-бір жолы – болатты 1080-11500С қыздырып, кейіннен суда шынықтыру.
Атмосфералық коррозия қоршаған ортаның тотығу-тотықсыздану әсерінің салдары болып табылады. Коррозияның бұл түрі ашық аспан астында орнатылған конструкцияда басым. Корорзияның бұл түріменен күресудің басты әдістері – конструкцияны бояу және коррозияға қарсы металлдың қабат беру (тозаңдатып жапсарлауменен). Тозаңдатылып төселген қабат қалыңдығы 50-500 мкм болады.
Сонымен қатар орта әсерінен болатын жабдықтардың ішкі қуысының корорзиялық күйреуіменен күресу әдістерінің бірі, бұл әдістер жұмысаймағына ингибиторлар беру және де металды электрохимиялық қорғау.
Коррозия ингибиторлары бөлшек бетінде металл мен ортаның электрохимиялық әсерлесуіне кедергі болатын жұқа қабат немесе ерітіндіге түспейтін тұнба түзеді. Бұл қорғау әдісі болаттың корорзияға төзімділігін бірнеше есе арттырады. Және де өнімнің тұйықталған циркуляцияланудағы жүйесіне тиімді.
Электрохимиялық қорғау әдісі, металлконструкцияны тоқ көзінің оң (анотдық қорғау) немесе теріс (катодтық қорғау) полюске жалғауменен түсіндіріледі. Сонымен қатар іс-тәжірибеде протекторлық деп аталатын қорғау тәсілі де кеңінен қолданылады. Тәсіл қорғалуға тиісті аппарат қаңқасының металына қатысты теріспотенциялы бар металлменен жалғастыру арқылы жүреді. Протектор ретінде қалыңдығы 10-15 мм мырыш пластинасын қолданады. Протектор ауданы аппарат бетінің 3-5 % құрайды. Тізбекте протектор анод болып табылады да, қарқынды күйреуге ұшырайды, алосы анодтың процестер нәтижесінде аппарат қаңқасының күйреуі азаяды. Сонымен қатар протектор ретінде никельдік сырықтарды да қолданады.
Едәуір дәрежеде коррозияға келесі жабдық бөліктері бейім:
1) ортаның жоғары сызықтық жылдамдығы бар орындар
2) қалдық кернеуі бар орындар
3) тұрып қалу аймақтары
4) қызу жүретін аймақтар
5) үйкелісу орындары
Эрозиялық тозу
Эрозиялық тозу, әдетте құрамы қатты түйіршіктерден тұратын қозғалмалы ортаның әсерімен жүреді. Мұнда бөлшектерге қарасты қозғалушы қатты түйіршіктер, бетпен соқтығыса отырып оны қажап байқайды. Сонымен қатар эрозиялық тозу құрамында қатты түйіршіктері жоқ сұйық немесе будың толасы бетке ұзақ әсер етуі барысында да байқалады. Жоғарыдағы айтылғандарға анализ жасайтын болсақ, онда эрозиялық тозу үйкелісу мен соққының әсерінен болатындығына көз жеткізуге болады, эрозиялық тозу шамасы бөлшек беті мен ортаның физика – механикалық қасиетіне, тоғысу бетіне әсер етуші меншікті қысым мен соққы күшіне, ортаның және бөлшек бетінің салыстырмалы жылдамдығына, сондай-ақ түйіршіктердің өлшемі мен салмағына байланысты болады.
Бөлшек беті мен ағын толасының бір сәтте тоғысуы кезінде, бөлшектіі температурасының жылдам жоғарылауын тудыратын энергияның бөлінуі жүреді. Мұның салдарынан беттік қабат тек деформацияланып қоймайды, сонымен қатар елелулі структуралық және фазалық түрленуге ұшырайды. Эрозиялық тозу технологиялық құбырлардың сүйірлену жерлерінде. Газ немесе сұйық толсаның бағытының өзгеруі кезінде пайда болады.
Жылулық тозу
Химия және тамақ өнеркәсіптерінің көптеген жабдықтары жоғары температурада жұмыс істейді. Мұндай жағдайлардағы жабдық жұмысы конструктивті материалдардың релаксация, аққыштыққа, сондай-ақ оның структурасының өзгеруіне алып келуі мүмцкін. Аққыштыұ құбылысы конструктивтік элементтің қалыпты әсердегі жүктемелердің әсерінен баяу пластикалық деформациялануымен түсіндіріледі. Егер де бөлшектегі кернеу елеусіз болатын болса, онда деформация шамасының өсуі тежеледі. Үлкен жүктемелер барысында деформация, конструкция күйреуге ұшырағанға дейін өседі. Өздігінде материалдардың аққыштық шегі нақты материал үшін температуралық шекпен анықталады, онда көмертекті материал үшін бұл шама 3750С-ді құрайтын болса, ал қоспалық болаты үшін 4200С аспауы керек.
Релаксация ретінде, бөлшектегі кернеу оның деформациясының шамасы өзгеріссіз болғандығы өз бетінше түсінуге болады. Бұл кездегі жүретін процестің физикалық мағынасы сонда, жоғары температурада бастапқы кезеңдегі бөлшектегі пайда болған серпімді деформацияға үлеседі. Жиі релаксация үлкен кернеу әсеріндегі бөлшектерде байқалады. Осының салдарынан реликсация жабдықтың герметикалығының бұзылуына және апатқа ұшырауына алып келеді.
Шойындық, көміртектік болаттарда 5000С температурадан жоғары температурада графиттелу байқалады. Графиттелу барысында карбиттің күйреуі жүреді де еркін карбид түзіледі, мұның нәтижесінде болатын соққылы тұтқырлығы төмендейді. Бұл процесс пісіру жіктері мен бу құбырларында интенсивті жүреді.
5000С жоғары температурада ұзақ мерзімді жұмыс істеу соққылық тұтқырлықтың төмендеуіне алып келеді (жылулық морттық), бұл құбылыс өздігінде қатты қоспадан бірқатар компоненттердің майда дисперсиялық күйде бөлінуімен түсіндіріледі.
Коррозиялық тозу
Коррозиялық тозу – химиялық және тамақ өнеркәсіптері жабдықтарында кең таралған тозудың түрі. Коррозиялық тозуды төмендету немесе алдын алу жабдық жұмысының эксплуатациялық сенімділігі қамтамасыз етуге және оның жөнделуіне кететін шығындарды азайтуға мүмкіндік береді. Коррозия ретінде бөлшек бетінің химиялық және электрохимиялық процесстердің жүру нәтижесінде күйреуін түсінуге болады. Бұл процестің физикалық мағынасы, жүру жылдамдығы және нәтижесі болаттың қоршаған ортамен өзара әсерлесу сипатына байланысты.
Коррозияны болаттың бір қатар қышқылдарда ерітіндіге түсуімен жүретін процестерден айыра білген жөн. Бетте таралу сипатына байланысты – тұтас, жергілікті, кристал аралық және селективті коррозия. Барысында бөлшек беті біркелкі күйреуге ұшырайды. Біркелкілігі бойынша тұтас коррозия біркелкі тұтас және жергілікті тұтас болып түрленеді.
Қоршаған орта әсерінің нәтижесінде химия және тамақ өнеркәсібі жабдықтары тұтас коррозияға ұшырайды. Сондай-ақ мұндай коррозия түріне көпшілік жағдайда болат конструкциялар көп ұшырайды. Атмосфералық коррозиямен күресудің негізгі әдісі бұл, бояу және коррозияға қарсы төсем төсеу (коррозияға төтеп беруші темірлеу). өздігінде лак бояулы төсемнің қызмет ету мерзімі 3-4 жылдық құраса, ал тозаңдатылып келтірілген темірлік қабат 8-10 жылды қамтиды.
Жергілікті коррозия кезінде бөлшектің тек қана жеке учаскелері бүлінеді. Жергілікті коррозияның түрлері, бұл саңылаулы коррозия және де дақ түріндегі коррозия. Саңылаулы коррозия кезінде алдын ала кратерлер мен шықурлар қалыптасады, және де дами отырып өн бойына өткен саңылауға айналады. Саңылаулық коррозиялық тозуға ұшырауын байқау қиын. Осыған орай күйреуді дер кезінде анықтау үшін аппарат қаңқасында хабар беруші саңылаулар қарастырылған. Мұндағы коррозия өнімінің пайда болуы, қорғау қабатының күйреуін дәлелдейді.
Кристал аралық коррозия, болаттың дән шекарасы бойынша күйреуімен сипатталады. Коррозияның бұл түрі тамақ, химия және басқа да өнеркәсіп салаларында қолданылатын хром никельді болаттарға тән. Кристаларалық коррозияның механизмі келесідегідей – юолаттың дәндерінің шекарас ыбойынша 400-5000С температурада хром карбиді жойылады, және де бұл жерлерде хромның жетіспеуінің салдарынан коррозияға тұрақтылығы жойылады. Бірқатар жағдайларда дәндердің жалпы салмақтан ажырап қалуы байқалады. Бұл құбылыс пісіру аймағында болуы ықтимал.Коррозияның бұл түрі кезінде коррозия өнімдері болат ішінде орналасқан және де болаттың сырт көрніісі өзгремейді, ал оның беріктік қасиеті күрт төмендей бастайды.
Коррозияның бұл түріен күресудің екң таралған әдісінің бірі – бұл 1050 – 11500С температураға дейін қыздырып сонан соң оны шынықтыру.
Коррозиялық жарылу. Жарғыншақтардың қалыптасуымен жүреді де, бұл кезде негізгі терең орналасқан жарғыншақпен қатар микрожарғыншақтар торабы дами бастайды, мұндай жарақаттарды пісіріп бітеу жанындағы микрожарғыншақтардың жеке дара дамуына алып келеді. Коррозиялық жарылу себептері, - механикалық өңдеу. Нәтижесінде дән өлшемдерінің өсуі және де өңдеуден соң қалыптасқан созу кернеулерінің орын алуы. Корорзиялық жарылу пісірілмелі қосылыстарда, құбырларда, табақшаларда және де керілген түтіктерде байқалады. Жарылу болаттың қасиеттерін структурасын алдын ала өзгеруінсіз бірденнен жүреді. Көміртекті болаттардың корорзиялы әсерге тұрақтылығын жоғарылату үшін, оларды 6500С-да күйдірумен өңдейді. Тотықпайтын болаттардың коррозияға тұрақтылығын жоғарылату, оларды 650-8500С температурасында, ал бірқатар жағдайларда жоғары температурада суғармен қамтамасыз етіледі.
Лекция 5